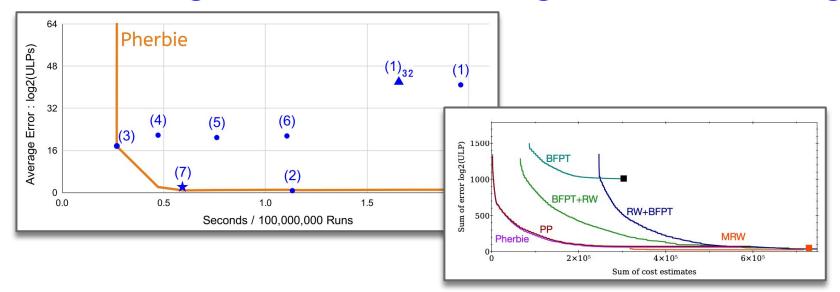
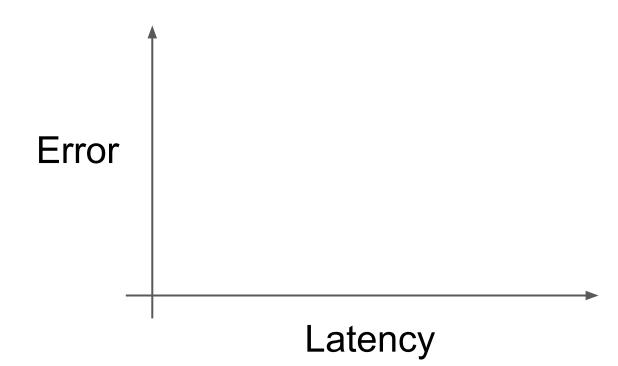
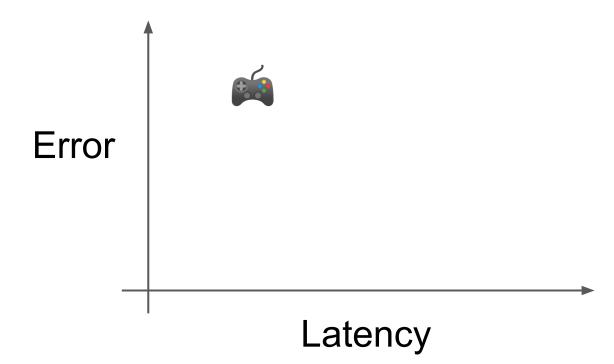
Combining Precision Tuning and Rewriting

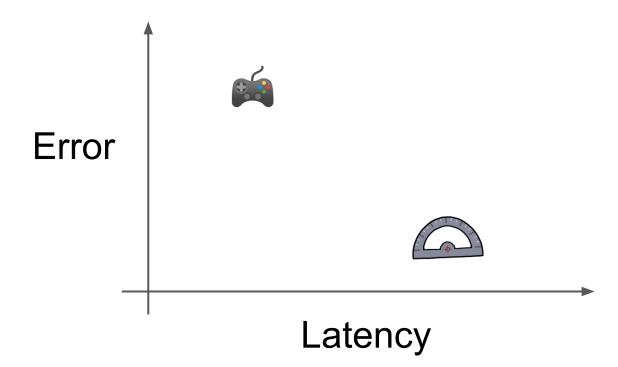


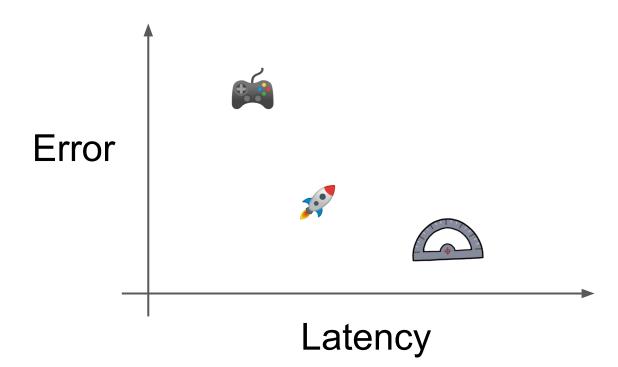
Brett Saiki, Oliver Flatt,

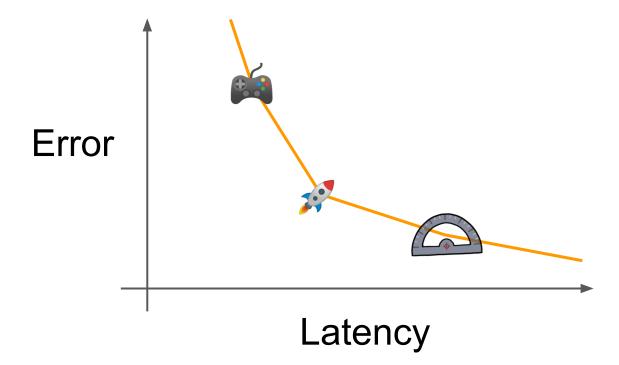
Chandrakana Nandi, Pavel Panchekha, Zachary Tatlock

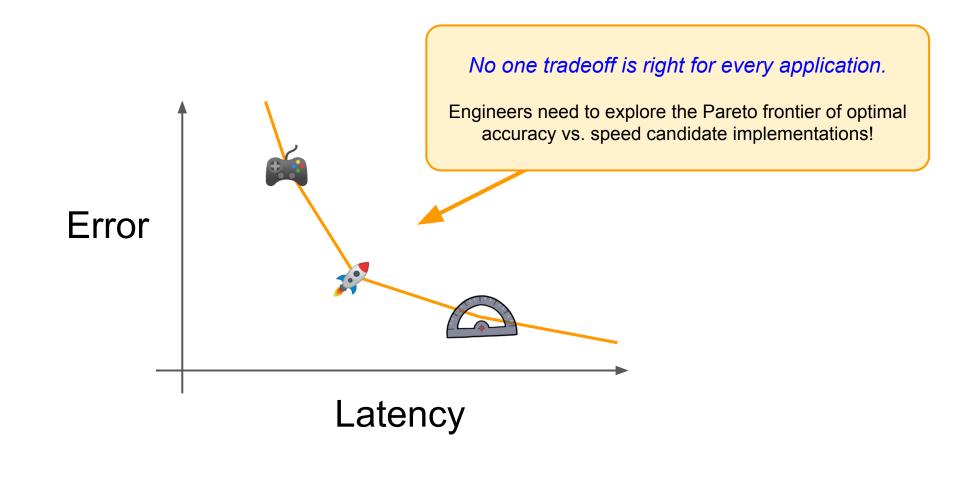


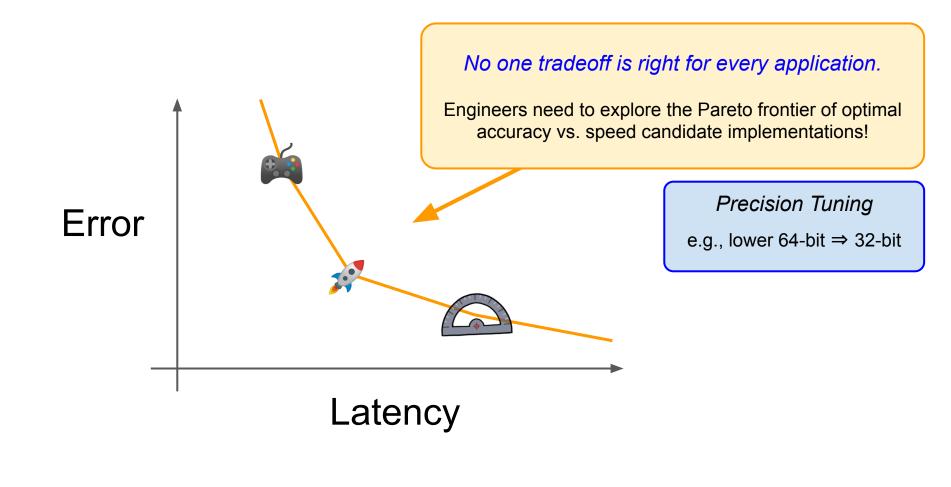


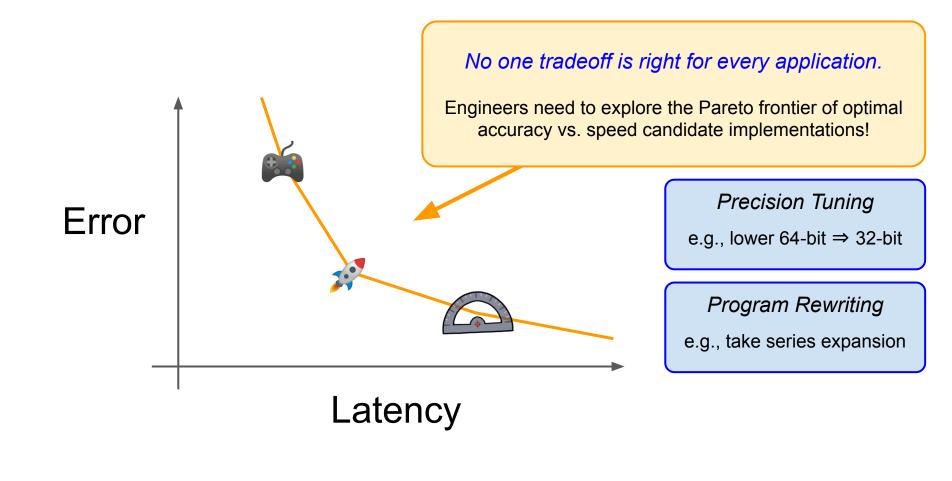












Precision Tuning

Program Rewriting

Precision Tuning

Program Rewriting

Lower bitwidth ⇒ higher throughput

- Major barrier: the memory wall!
- Enable more vectorization, etc.

Difficult to tell where lowering is safe

- Accums. large, but elts small?
- Past work adapts delta debugging
 - [Khalifa et al. FTSCS '19]
 - [Rubio-González et al. SC '13]

Precision Tuning

Lower bitwidth ⇒ higher throughput

- Major barrier: the memory wall!
- Enable more vectorization, etc.

Difficult to tell where lowering is safe

- Accums. large, but elts small?
- Past work adapts delta debugging
 - o [Khalifa et al. FTSCS '19]
 - o [Rubio-González et al. SC '13]

Program Rewriting

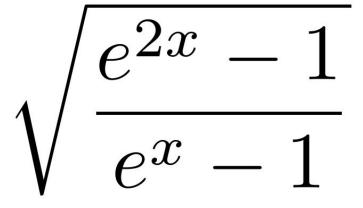
Avoid pitfalls and/or use coarser approx

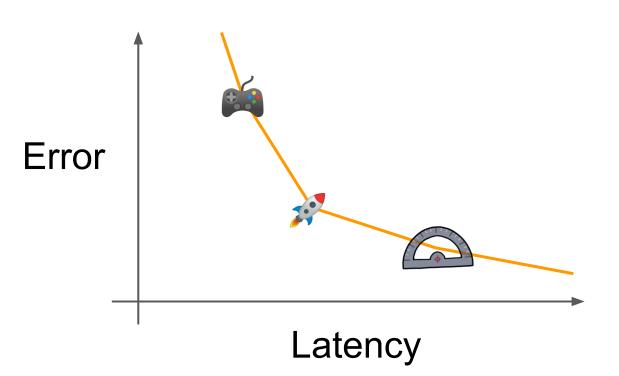
- Avoid cancellation, intro series
- e.g., generally want $(x + 1) x \Rightarrow 1$

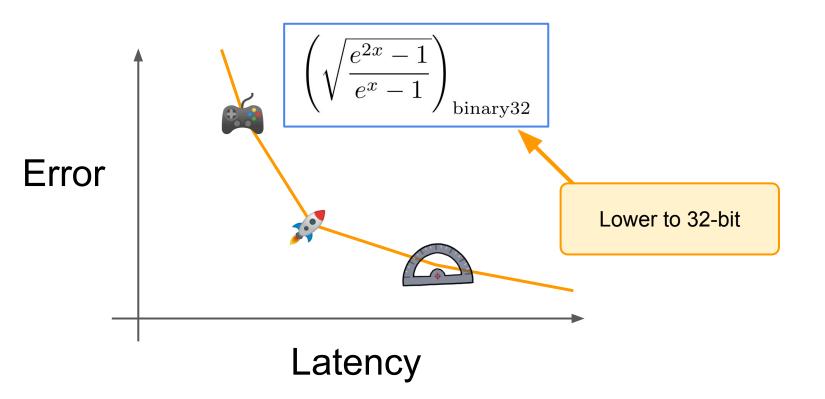
Difficult to find / carry out good rewrites

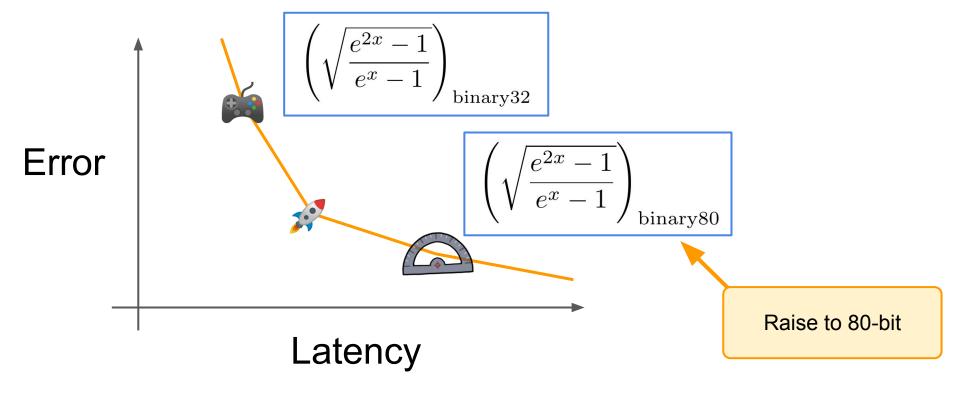
- Need to guide rewrite search
- Past work applies PL synthesis
 - [Schkufza et al. PLDI '14]
 - [Panchekha et al. PLDI '15]

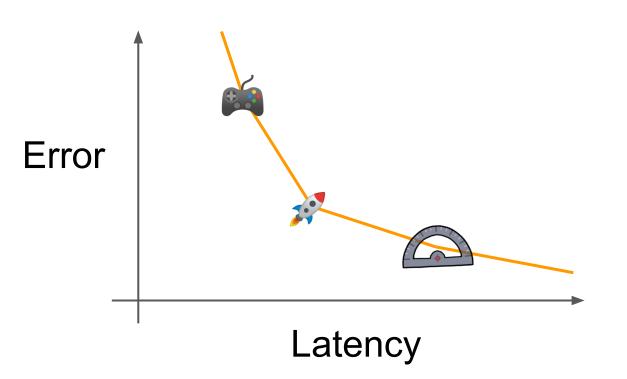
How to optimize?

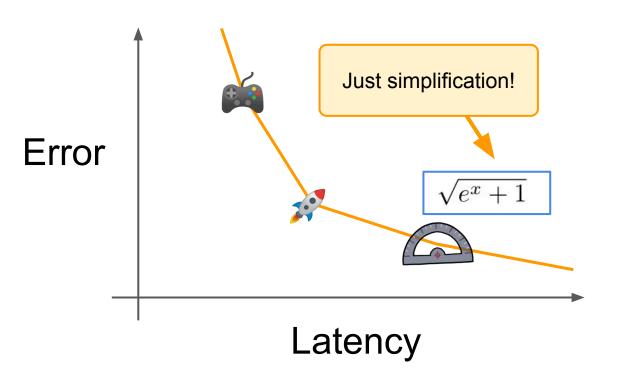


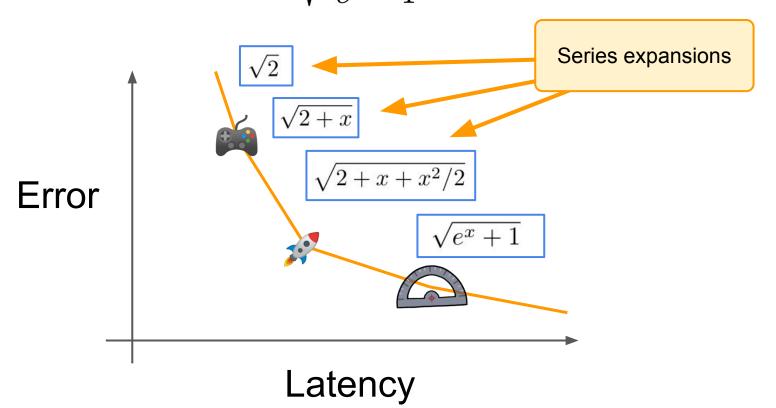












When and how to use?

- Tune then rewrite?
- Rewrite then tune?
- Alternate? Run to fixpoint?
- Share accuracy analyses?

How to optimize $\sqrt{\frac{e^{2x}-1}{e^x-1}}$ via precision tuning AND rewriting!

$$egin{aligned} extbf{if} & |x| \leq 0.05: \ & \sqrt{2+x} \ extbf{else}: \ & \sqrt{\langle (e^x+1)_{ ext{binary32}}
angle_{ ext{binary64}}} \end{aligned}$$

How to optimize $\sqrt{\frac{e^{2x}-1}{e^x-1}}$ via precision tuning AND rewriting !

Different techniques for different inputs

if $|x| \leq 0.05$:

Sometimes just rewrite

else:

$$\sqrt{\langle (e^x+1)_{
m binary32}
angle_{
m binary64}}$$

Sometimes rewrite + tune

Our Result

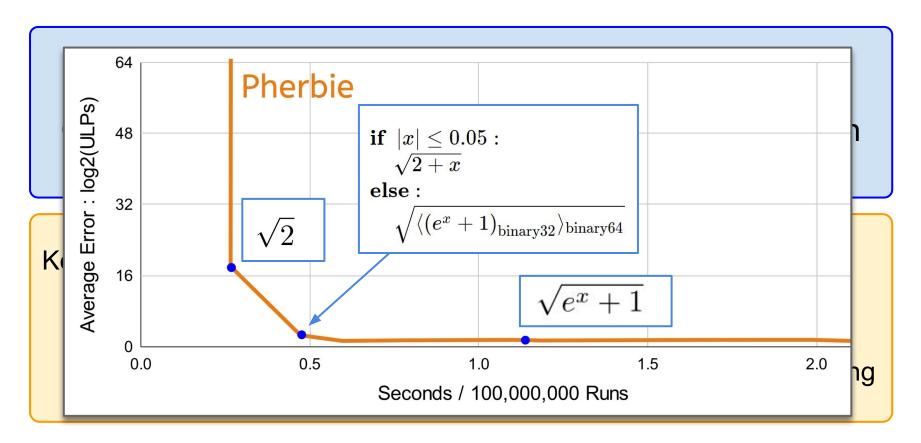
Combine precision tuning and rewriting to produce a rich set of Pareto-optimal accuracy versus speed trade-offs.

Our Result

Combine precision tuning and rewriting to produce a rich set of Pareto-optimal accuracy versus speed trade-offs.

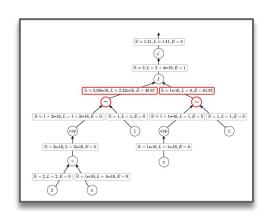
Key Insights:

- Finer-grained interleavings ⇒ better Pareto frontiers
- Precision tuning can be rephrased as a rewriting problem
- "Local Error Analysis" helps both precision tuning and rewriting

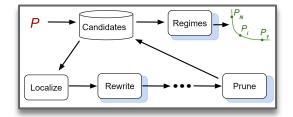


Outline

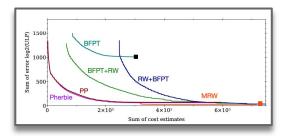
- Herbie: Improving Accuracy via Rewriting
 - Key Insight: local error guides rewriting

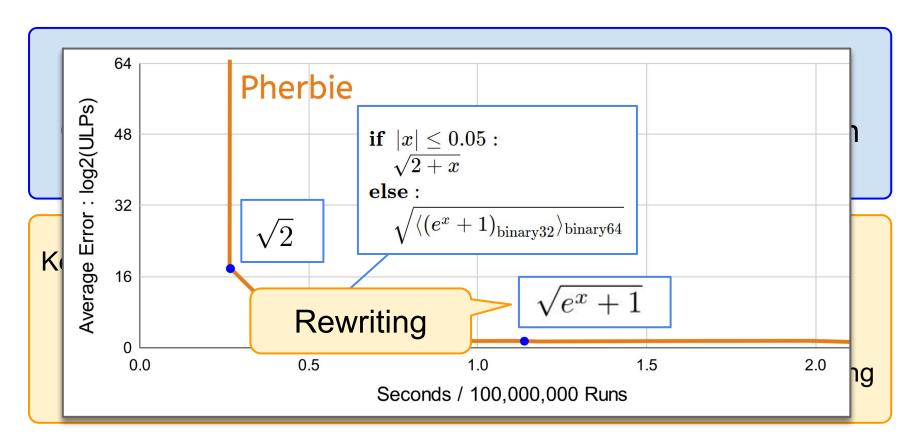


- Pherbie: Extending Herbie with Precision Tuning
 - Key Insight: local error also guides precision tuning!

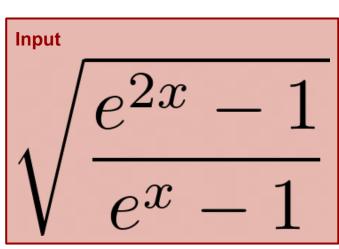


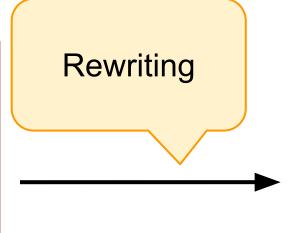
- Evaluation: Applying Pherbie to Classics + Graphics
 - Key Insight: Finer-grained interleaving → better optimization!

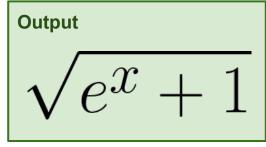




Developed continuously since 2015
Improves Accuracy Automatically
Rewriting Only



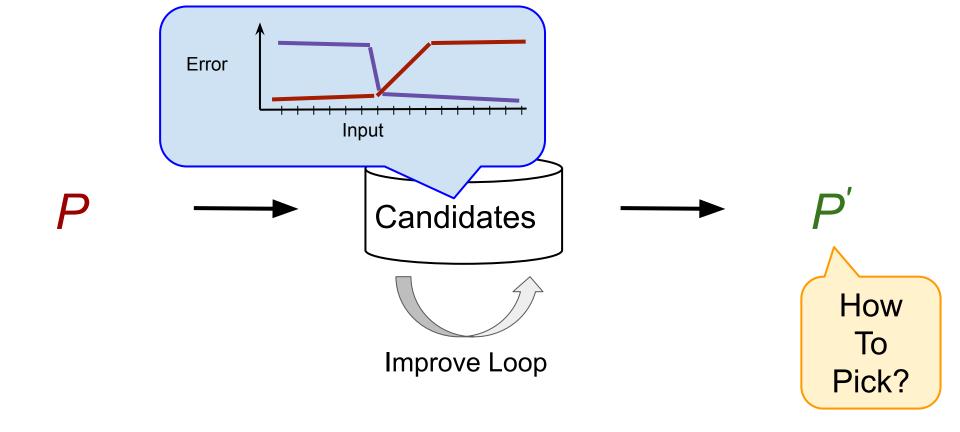


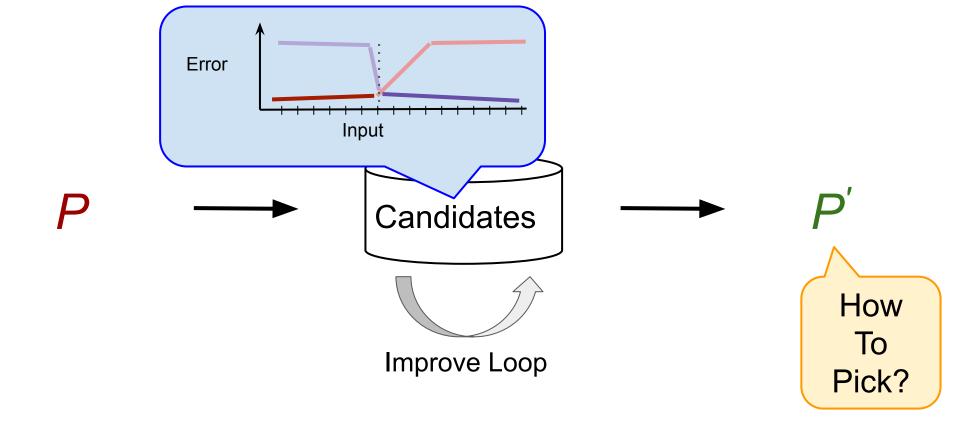


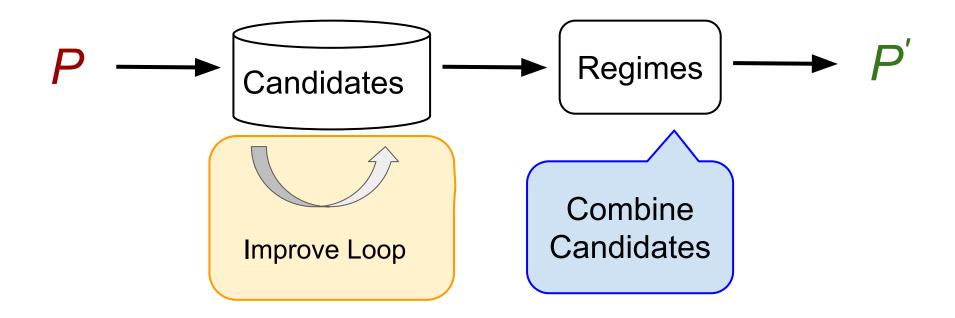
Developed continuously since 2015
Improves Accuracy Automatically
Rewriting Only

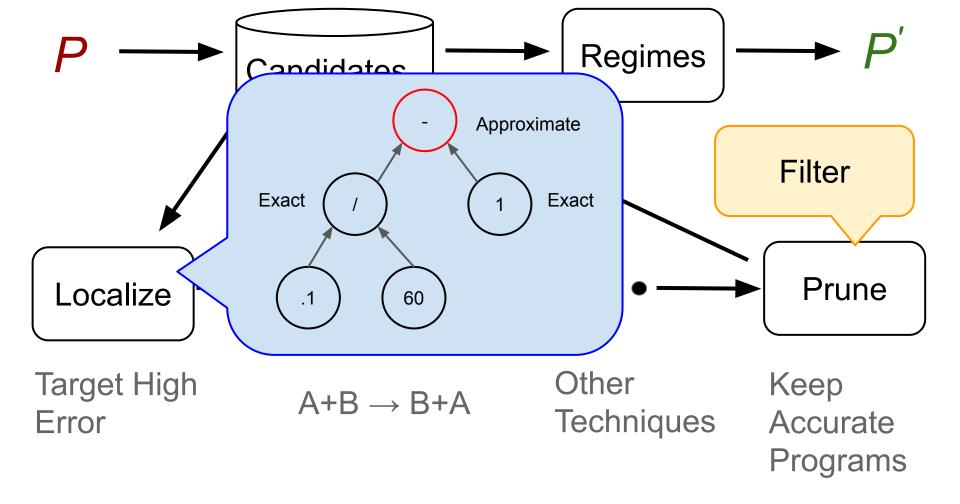


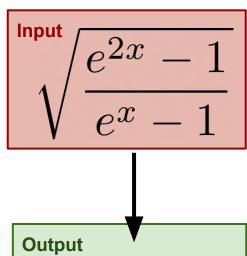












Input $(x+1)^{\left(\frac{1}{n}\right)} - x^{\left(\frac{1}{n}\right)}$

 \sqrt{x}

Small And Accurate!

Accurate, But Slow!

 $0.5 \cdot \frac{\log \left(1+x\right)^2}{}$

$$+\frac{\log(1+x)-\log x}{n}$$

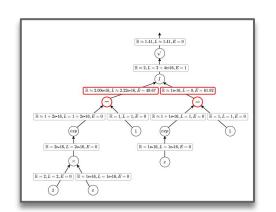
Output

 $n \cdot n$

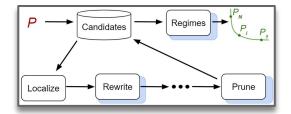
$$-\frac{\log x^2}{n \cdot n} \cdot \left(0.5 + 0.1666666666666666 \cdot \frac{\log x}{n}\right)$$

Outline

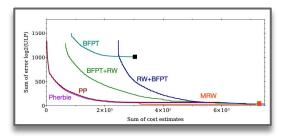
- ✓ Herbie: Improving Accuracy via Rewriting
 - Key Insight: local error guides rewriting



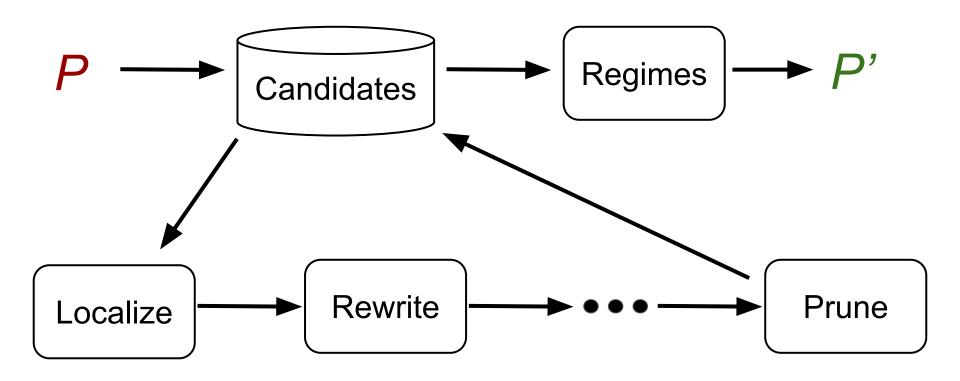
- Pherbie: Extending Herbie with Precision Tuning
 - Key Insight: local error also guides precision tuning!

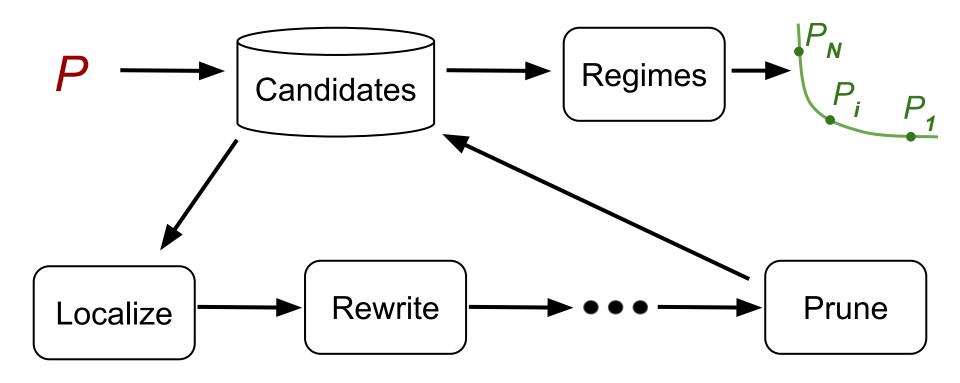


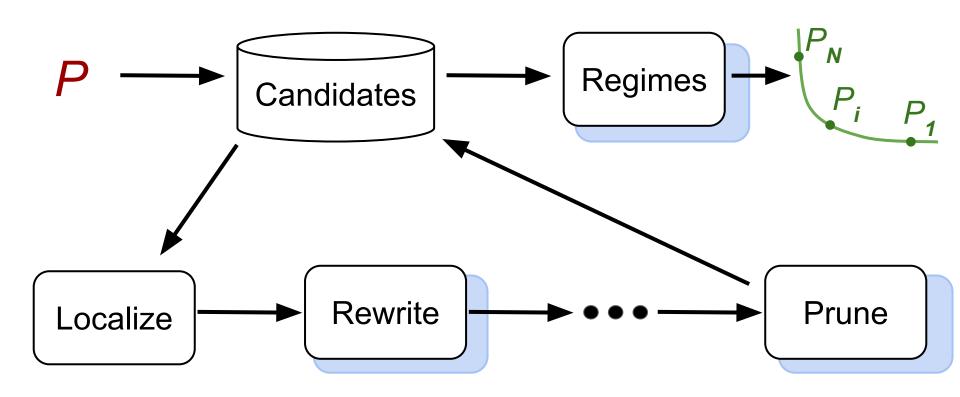
- Evaluation: Applying Pherbie to Classics + Graphics
 - Key Insight: Finer-grained interleaving → better optimization!

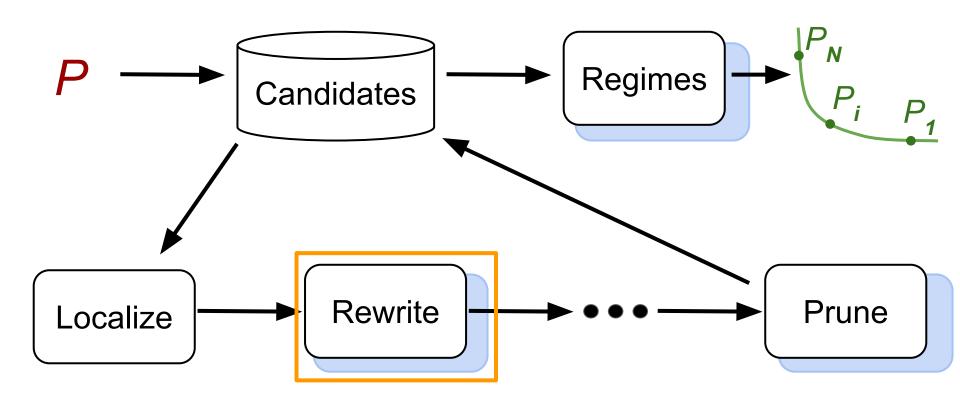


Pherbie Starting Point: Herbie



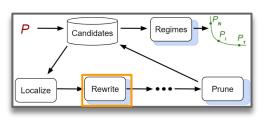






Herbie
$$(a+b) / c \Rightarrow (a/c) + (b/c)$$

Pherbie



Single global precision

Herbie
$$(a+b) / c \Rightarrow (a/c) + (b/c)$$

Single global precision

Pherbie
$$\left(a +_{\mathrm{f}64} b\right)/_{\mathrm{f}64} c \ \Rightarrow \ \left(a \ /_{\mathrm{f}64} \ c\right) +_{\mathrm{f}64} \left(b \ /_{\mathrm{f}64} \ c\right)$$

Precision-specific operators

Herbie

$$(a+b) / c \Rightarrow (a/c) + (b/c)$$

Single global precision

Pherbie
$$\left(a +_{\mathrm{f}64} b\right)/_{\mathrm{f}64} c \ \Rightarrow \ \left(a \ /_{\mathrm{f}64} \ c\right) +_{\mathrm{f}64} \left(b \ /_{\mathrm{f}64} \ c\right)$$

Precision-specific operators

$$(x)_p \Rightarrow \operatorname{cast}_p(x)_q$$

Precision rewrites

Herbie

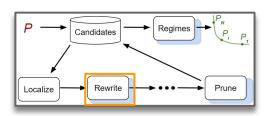
$$(a+b) / c \Rightarrow (a/c) + (b/c)$$

Pherbie
$$(a +_{\text{f64}} b) /_{\text{f64}} c \Rightarrow (a /_{\text{f64}} c) +_{\text{f64}} (b /_{\text{f64}} c)$$

Rewriting

$$(x)_p \Rightarrow \operatorname{cast}_p(x)_q$$

Precision tuning



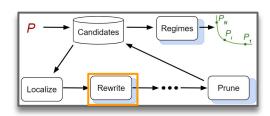
Herbie

$$(a+b) / c \Rightarrow (a / c) + (b / c)$$

Pherbie

Pherbie can use the same rewriting machinery as Herbie!

$$(x)_p \Rightarrow \operatorname{cast}_p(x)_q$$



Herbie

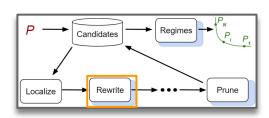
$$(a+b) / c \Rightarrow (a / c) + (b / c)$$

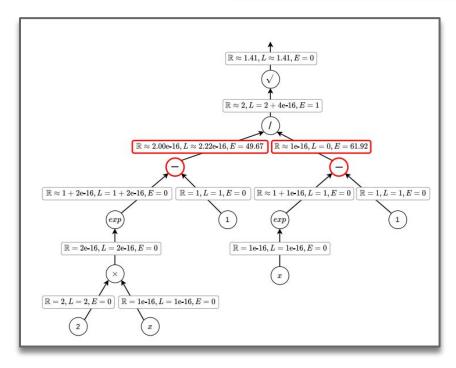
Pherbie

Pherbie can use the same rewriting machinery as Herbie!

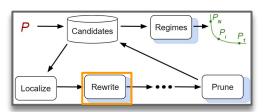
But where should Pherbie apply precision rewrites?

Pherbie: Guide Tuning w/ Local Error

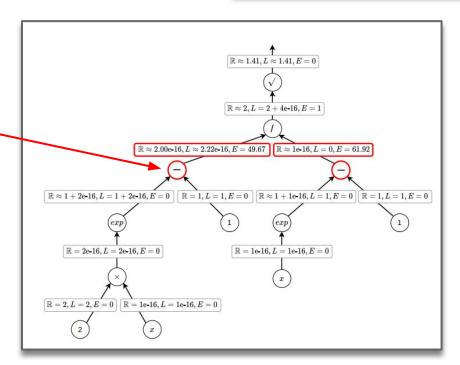




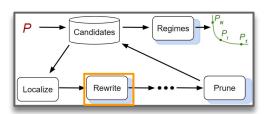
Pherbie: Guide Tuning w/ Local Error



 Rewriting to increase precision at locations w/ high local error improves accuracy.

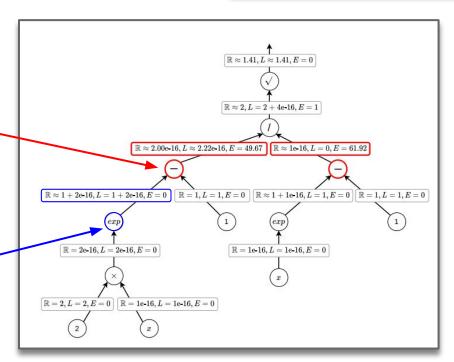


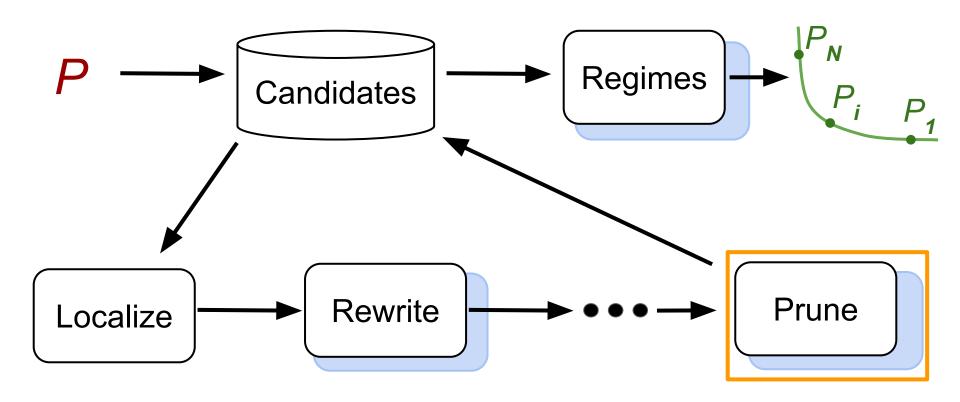
Pherbie: Guide Tuning w/ Local Error

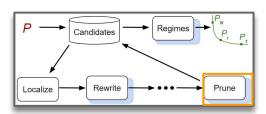


 Rewriting to increase precision at locations w/ high local error improves accuracy.

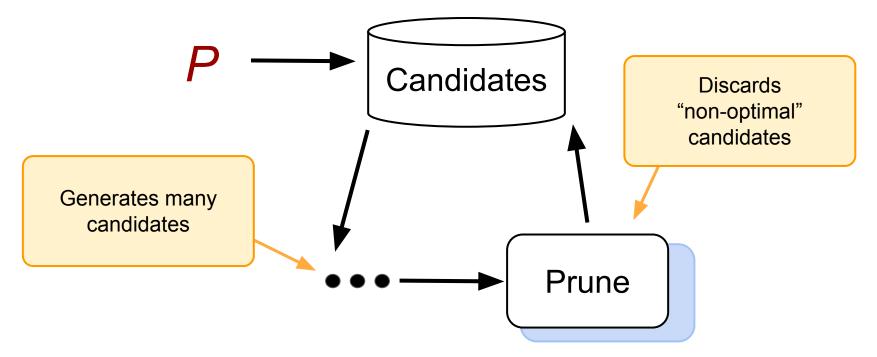
 Rewriting to decrease precision at locations w/ low local error improves speed.



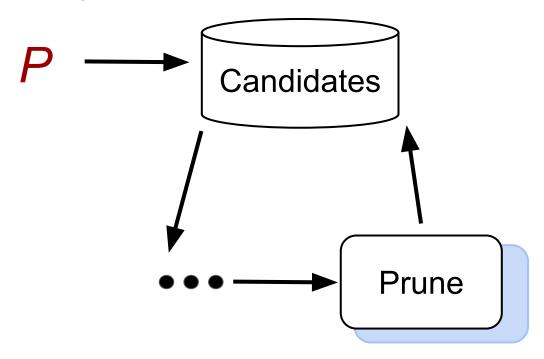


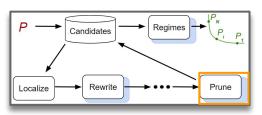


Pruning in general



Pruning in Herbie:



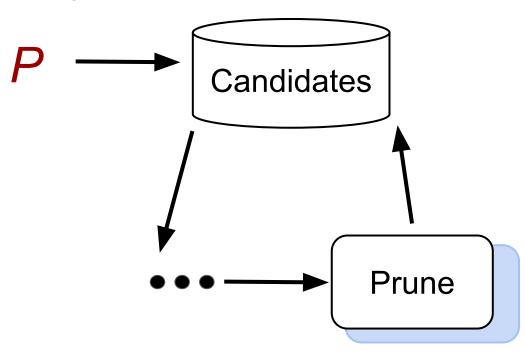


Criteria

Must be more accurate than every other expression on at least one sampled point

Regimes Prune Prune

Pruning in Herbie:



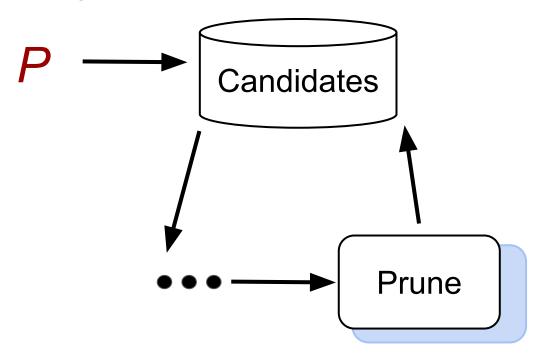
Criteria

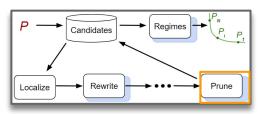
Must be more accurate than every other expression on at least one sampled point

Use in Pherbie?

Accuracy only ⇒ slow expressions

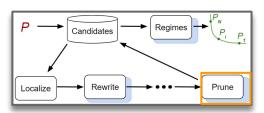
Pruning in Pherbie:



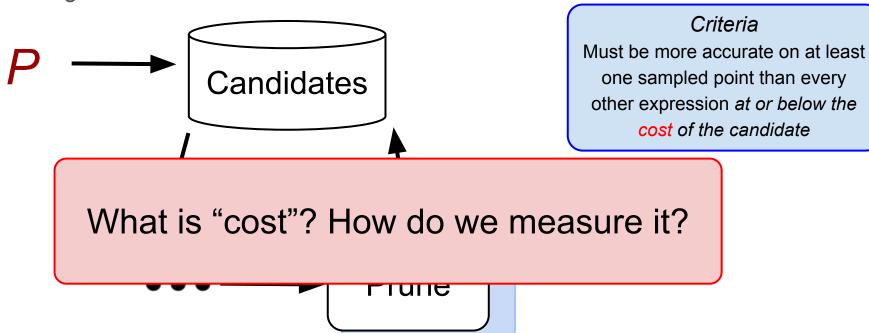


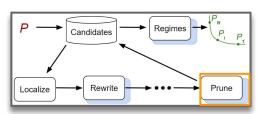
Criteria

Must be more accurate on at least one sampled point than every other expression at or below the cost of the candidate



Pruning in Pherbie:

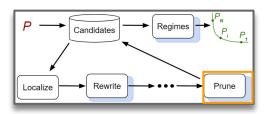




What is "cost"? How do we measure it?

Too expensive to measure precise latency of each candidate

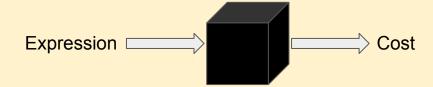
- Need to evaluate candidate many times to get accurate estimator
- Pherbie produces thousands of candidates

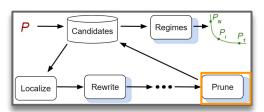


What is "cost"? How do we measure it?

Key Insight: Only need relative speed comparison → use a simple cost model!

- Quickly estimates latency
- Sufficient for relative ordering of candidates



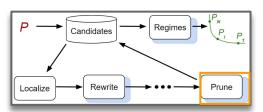


What is "cost"? How do we measure it?

Example cost model:

Expression Cost

- Operators assigned a cost:
 - Arithmetic: low number (1)
 - Library functions: large number (100)
- Multiply operator cost by bitwidth of representation
- Conditionals: branch conditions cost + largest branch cost

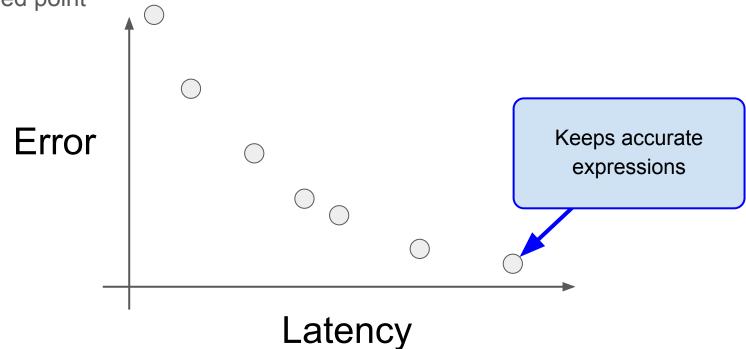


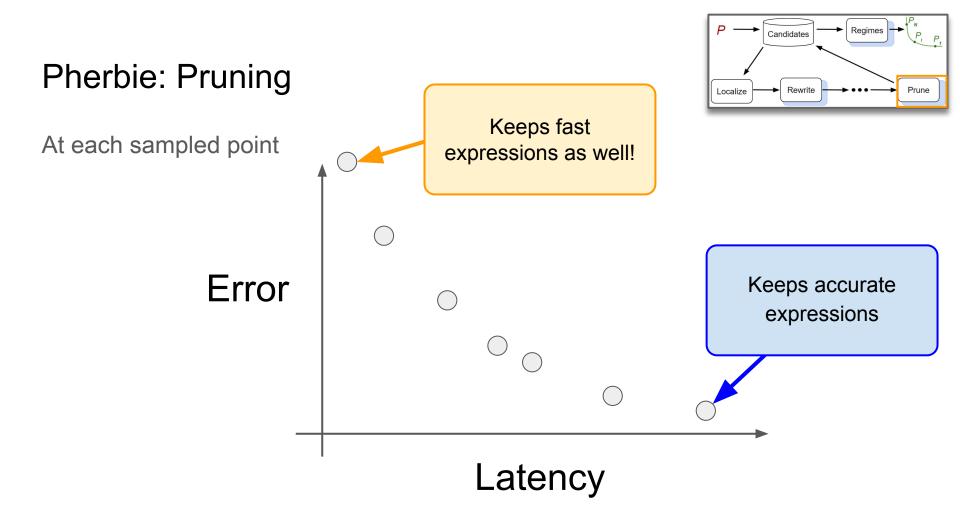
What is "cost"? How do we measure it?

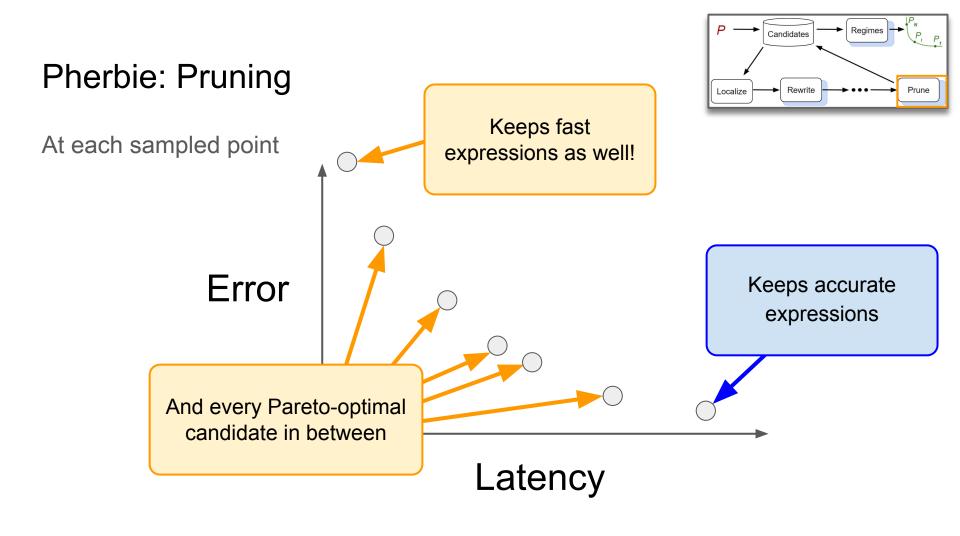
Cost models in general

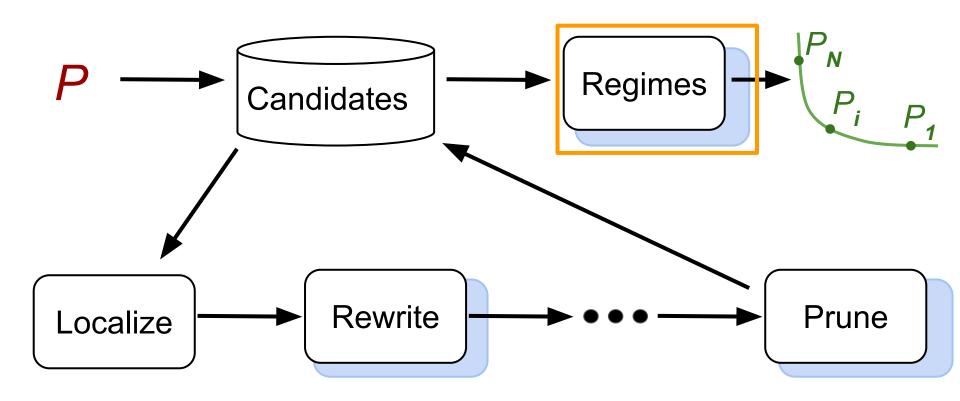
- Simple cost models are good enough
- Better cost models exist
- Pherbie is modular, so users can plug and play

At each sampled point



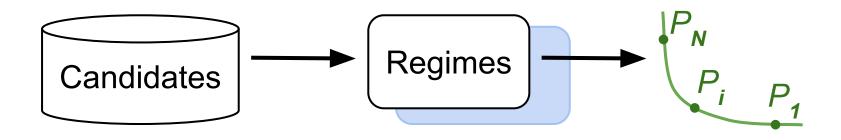


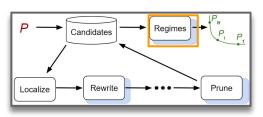




Pherbie: accuracy and cost

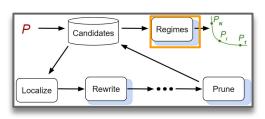
- Need to produce a Pareto frontier!
- Iteratively run Herbie's regimes algorithm on subset of candidates

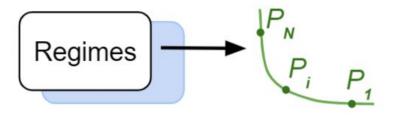


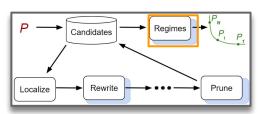


Pherbie regimes algorithm

1. Run Herbie regimes algorithm on subset cheaper than cost bound

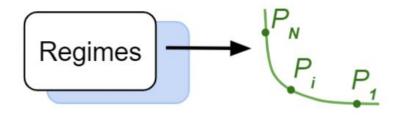


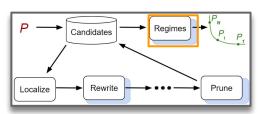




Pherbie regimes algorithm

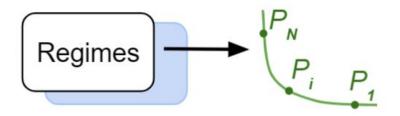
- Run Herbie regimes algorithm on subset cheaper than cost bound
- 2. Decrease cost bound so next iteration produces *different* candidate



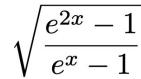


Pherbie regimes algorithm

- Run Herbie regimes algorithm on subset cheaper than cost bound
- Decrease cost bound so next iteration produces different candidate
- Repeat until no candidate is below cost bound



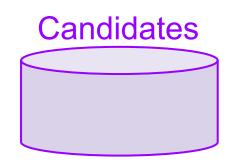
Pherbie Regimes Example: Iter 1 / 5

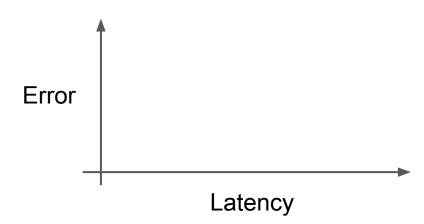


while 0 < |Candidates| :</pre>

p = ExtractMinError(Candidates)

Candidates.removeAboveCost(p)

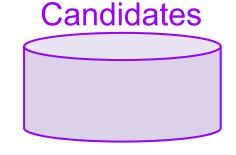


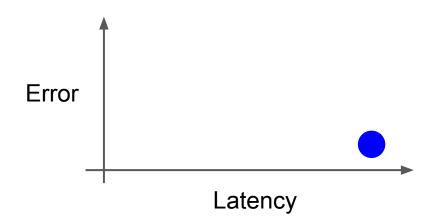


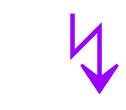
$$\sqrt{\frac{e^{2x} - 1}{e^x - 1}}$$

while 0 < |Candidates| :

p = ExtractMinError(Candidates)





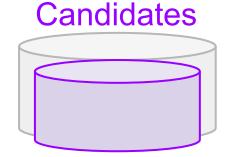


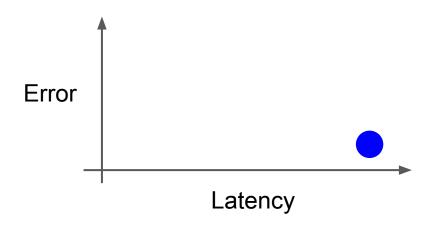
$$\sqrt{\frac{1 + (e^x)^{1.5} \cdot (e^x)^{1.5}}{1 + (e^x + (e^x)^{1.5}) \cdot (\sqrt{e^x} - 1)}}$$

$$\sqrt{\frac{e^{2x} - 1}{e^x - 1}}$$

while 0 < |Candidates| :</pre>

p = ExtractMinError(Candidates)



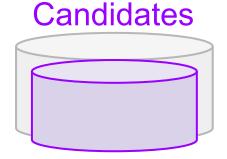


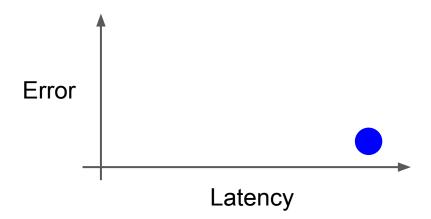
$$\sqrt{\frac{1 + (e^x)^{1.5} \cdot (e^x)^{1.5}}{1 + (e^x + (e^x)^{1.5}) \cdot (\sqrt{e^x} - 1)}}$$

 $\sqrt{\frac{e^{2x} - 1}{e^x - 1}}$

while 0 < |Candidates| :

p = ExtractMinError(Candidates)



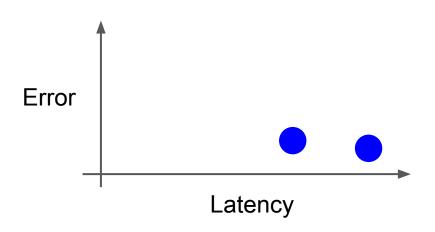


$$\sqrt{\frac{e^{2x} - 1}{e^x - 1}}$$

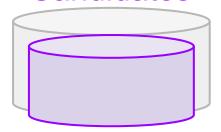
while 0 < |Candidates| :</pre>

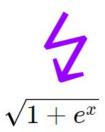
p = ExtractMinError(Candidates)

Candidates.removeAboveCost(p)



Candidates

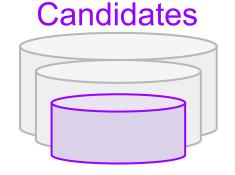


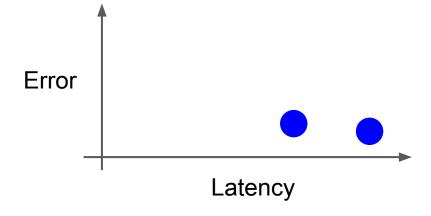


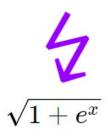
$$\sqrt{\frac{e^{2x} - 1}{e^x - 1}}$$

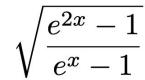
while 0 < |Candidates| :

p = ExtractMinError(Candidates)



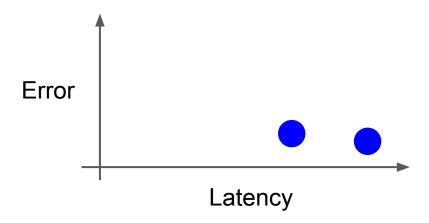






while 0 < |Candidates| :

p = ExtractMinError(Candidates)

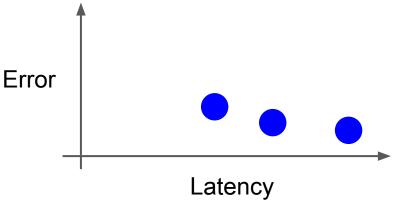


$$\sqrt{\frac{e^{2x} - 1}{e^x - 1}}$$

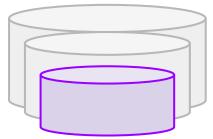
while 0 < |Candidates| :

p = ExtractMinError(Candidates)

Candidates.removeAboveCost(p)



Candidates



if $x \leq -0.10591501462198885$:

$$\langle \left(\sqrt{1+e^x}\right)_{(\text{float 5 16})} \rangle_{\text{binary64}}$$

else:

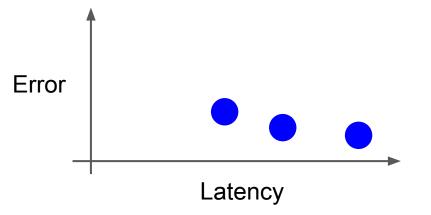
$$\sqrt{2+(x+x\cdot(x\cdot0.5))}$$

$$\sqrt{\frac{e^{2x} - 1}{e^x - 1}}$$

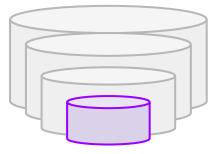
while 0 < |Candidates| :

p = ExtractMinError(Candidates)

Candidates.removeAboveCost(p)



Candidates



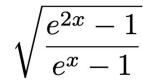
2

if $x \le -0.10591501462198885$:

$$\langle \left(\sqrt{1+e^x}
ight)_{ ext{(float 5 16)}}
angle_{ ext{binary6}}$$

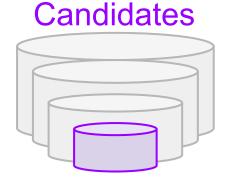
else:

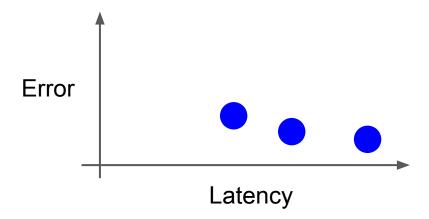
$$\sqrt{2+(x+x\cdot(x\cdot0.5))}$$



while 0 < |Candidates| :

p = ExtractMinError(Candidates)



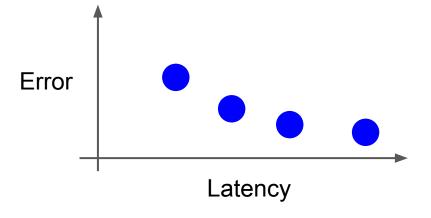


$$\sqrt{\frac{e^{2x} - 1}{e^x - 1}}$$

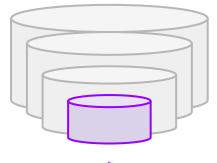
while 0 < |Candidates| :</pre>

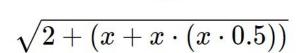
p = ExtractMinError(Candidates)

Candidates.removeAboveCost(p)



Candidates



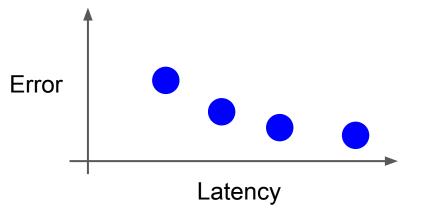


$$\sqrt{\frac{e^{2x} - 1}{e^x - 1}}$$

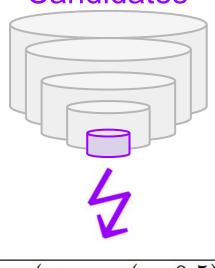
while 0 < |Candidates|:

p = ExtractMinError(Candidates)

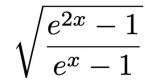
Candidates.removeAboveCost(p)



Candidates



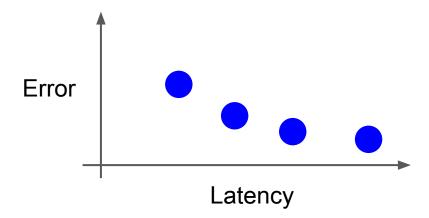
$$\sqrt{2+(x+x\cdot(x\cdot0.5))}$$



while 0 < |Candidates| :

p = ExtractMinError(Candidates)



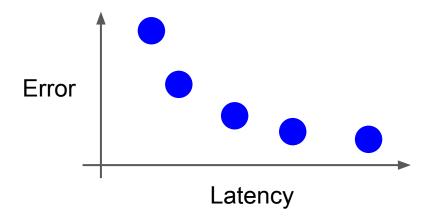


$\sqrt{\frac{e^{2x} - 1}{e^x - 1}}$

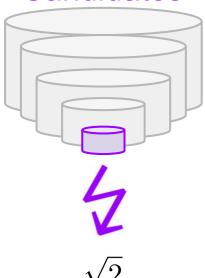
while 0 < |Candidates| :</pre>

p = ExtractMinError(Candidates)

Candidates.removeAboveCost(p)



Candidates

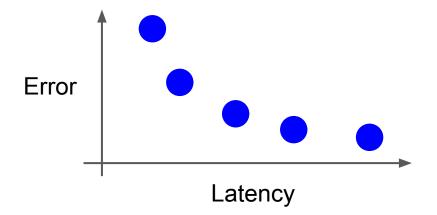


$\sqrt{\frac{e^{2x} - 1}{e^x - 1}}$

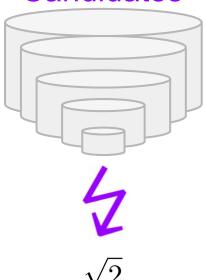
while 0 < |Candidates| :</pre>

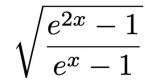
p = ExtractMinError(Candidates)

Candidates.removeAboveCost(p)



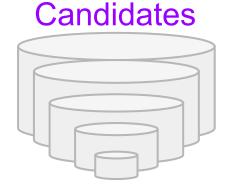
Candidates

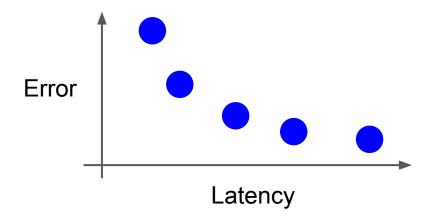




while 0 < |Candidates| :</pre>

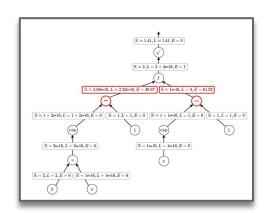
p = ExtractMinError(Candidates)



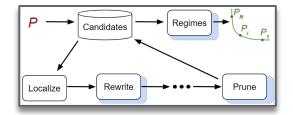


Outline

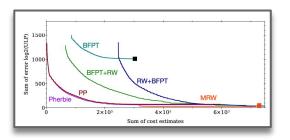
- Herbie: Improving Accuracy via Rewriting
 - Key Insight: local error guides rewriting



- ✓ Pherbie: Extending Herbie with Precision Tuning
 - Key Insight: local error also guides precision tuning!



- Evaluation: Applying Pherbie to Classics + Graphics
 - Key Insight: Finer-grained interleaving → better optimization!



Evaluation: Benchmark Suites

- NMSE Numerical Methods for Scientists and Engineers (Hamming, 1986)
 - Standard textbook on numerical analysis

- PBRT Physically Based Rendering (Pharr et. al, 2016)
 - Open-source textbook describing rendering photorealistic scenes

Pherbie produces Pareto-optimal implementations

Curve Intersection (PBRT)

$$\left(\sin\left((1-u)\cdot normAngle\right)\cdot\frac{1}{\sin normAngle}\right)\cdot n0_i + \left(\sin\left(u\cdot normAngle\right)\cdot\frac{1}{\sin normAngle}\right)\cdot n1_i$$

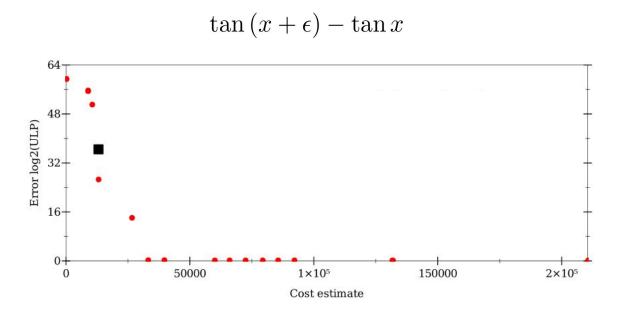
Pherbie produces Pareto-optimal implementations

Curve Intersection (PBRT)

$$\left(\sin\left((1-u)\cdot normAngle\right)\cdot\frac{1}{\sin normAngle}\right)\cdot n0_{i} + \left(\sin\left(u\cdot normAngle\right)\cdot\frac{1}{\sin normAngle}\right)\cdot n1_{i}$$

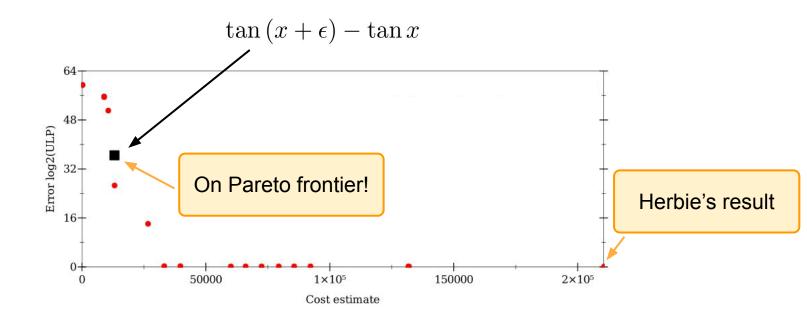
Pherbie produces Pareto-optimal implementations

Nearby Tangent Difference (NMSE)



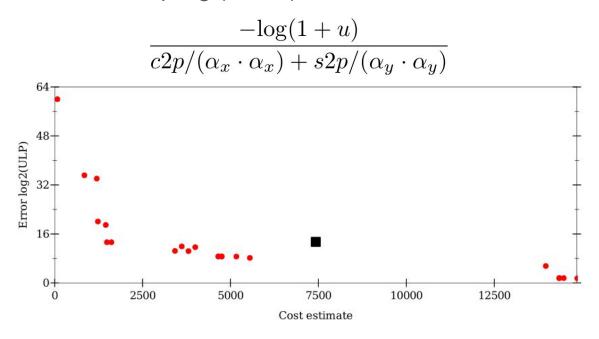
Pherbie produces Pareto-optimal implementations

Nearby Tangent Difference (NMSE)



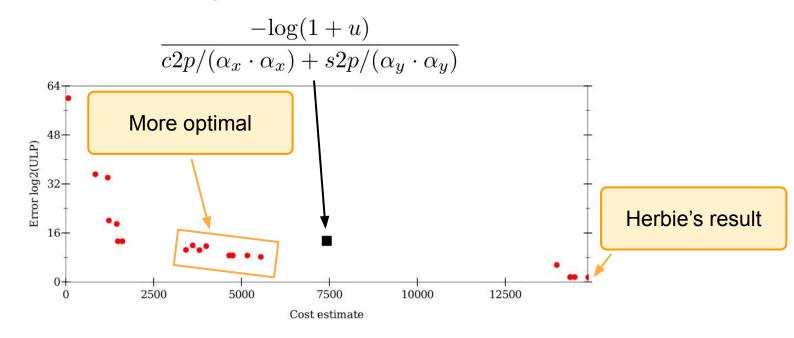
Pherbie produces Pareto-optimal implementations

Beckmann Distribution Sampling (PBRT)



Pherbie produces Pareto-optimal implementations

Beckmann Distribution Sampling (PBRT)



Evaluation Finer interleavings ⇒ Better Pareto frontier

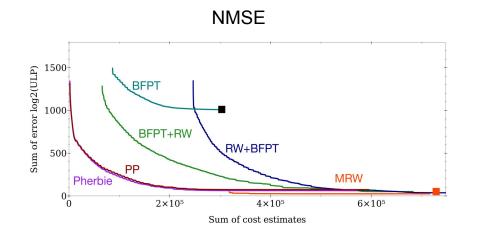
Comparing different methods of using rewriting and precision tuning:

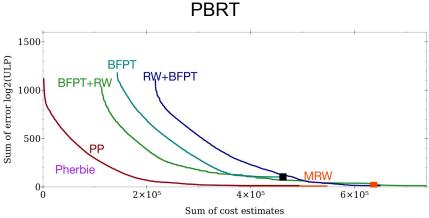
Single Technique	Chaining Techniques	Interleaving Techniques
Herbie Herbie x100 (RW) Tuning-only (BFPT)	Rewrite-then-tune (RW+BFPT) Tune-then-rewrite (BFPT+RW)	Coarse-grained interleaving (PP) Fine-grained interleaving (Pherbie)

Evaluation Finer interleavings ⇒ Better Pareto frontier

Method:

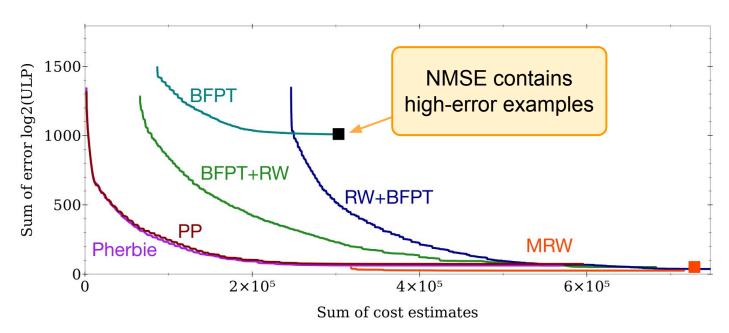
• For a given cumulative cost, what is the minimum cumulative error we can achieve by selecting one output expression from each benchmark?





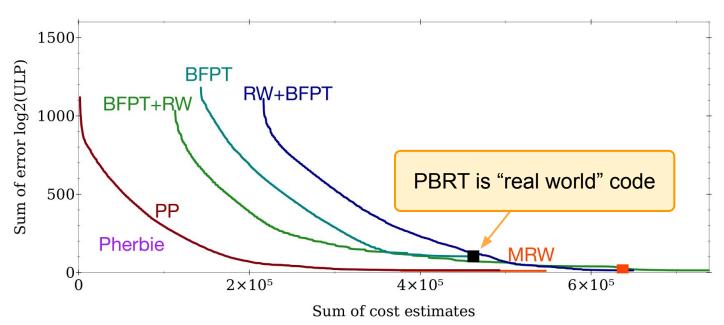
Finer interleavings ⇒ Better Pareto frontier

Suite: NMSE



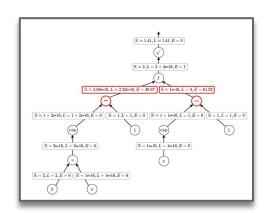
Finer interleavings ⇒ Better Pareto frontier

Suite: PBRT

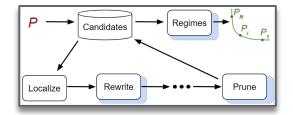


Outline

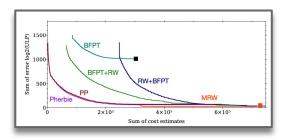
- ✓ Herbie: Improving Accuracy via Rewriting
 - Key Insight: local error guides rewriting



- ✓ Pherbie: Extending Herbie with Precision Tuning
 - Key Insight: local error also guides precision tuning!



- ✓ Evaluation: Applying Pherbie to Classics + Graphics
 - Key Insight: Finer-grained interleaving → better optimization!



Related Work

- Scalable error analysis
 - [Gopalakrishnan et al. SC'20]
- Improving accuracy of imperative floating point programs
 - [Martel et al. AFM'17]
- Tunable precision of floating point programs
 - [Schkufza et al. PLDI '14]
- Sound compilation of real computations
 - [Darulova et al. POPL'14]
- Debugging and correct rounding of floating point programs
 - [Nagarakatte et al. POPL'21, PLDI'21]

Team and Acknowledgments

Brett Saiki *UW*

Oliver Flatt *Univ. of Utah*

Chandrakana Nandi *UW*

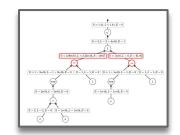
Pavel Panchekha *Univ. of Utah*

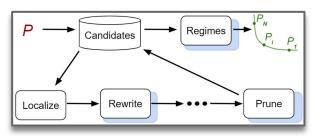
Zachary Tatlock *UW*

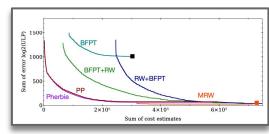
THANK YOU!

Pherbie: Precision Tuning + Rewriting

- ✓ Herbie: Improving Accuracy via Rewriting
 - Key Insight: local error guides rewriting
- ✓ Pherbie: Extending Herbie with Precision Tuning
 - Key Insight: local error also guides precision tuning!
- ✓ Evaluation: Applying Pherbie to Classics + Graphics
 - Key Insight: Finer-grained interleaving → better optimization!







herbie.uwplse.org