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Abstract
Scientific and engineering applications depend on floating point
arithmetic to approximate real arithmetic. This approximation intro-
duces rounding error, which can accumulate to produce unacceptable
results. While the numerical methods literature provides techniques
to mitigate rounding error, applying these techniques requires manu-
ally rearranging expressions and understanding the finer details of
floating point arithmetic.

We introduce Herbie, a tool which automatically discovers the
rewrites experts perform to improve accuracy. Herbie’s heuristic
search estimates and localizes rounding error using sampled points
(rather than static error analysis), applies a database of rules to
generate improvements, takes series expansions, and combines
improvements for different input regions. We evaluated Herbie on
examples from a classic numerical methods textbook, and found that
Herbie was able to improve accuracy on each example, some by up
to 60 bits, while imposing a median performance overhead of 40%.
Colleagues in machine learning have used Herbie to significantly
improve the results of a clustering algorithm, and a mathematical
library has accepted two patches generated using Herbie.

Categories and Subject Descriptors G.1.0 [Numerical Analysis]:
General

Keywords Floating point, numerical accuracy, program rewriting

1. Introduction
Floating point rounding errors are notoriously difficult to detect
and debug [24, 25, 38]. Rounding errors have led to irreproducibil-
ity and even retraction of scientific articles [1–3], legal regulations
in finance [15], and distorted stock market indices [29, 34]. Many
applications which must produce accurate results, including phys-
ical simulators and statistical packages, depend on floating point
arithmetic to approximate computations over real numbers. Floating
point arithmetic makes these computations feasible, but it also intro-
duces rounding error, which may cause the approximate results to
differ from the ideal real-number results by an unacceptable margin.

When these floating point issues are discovered, many devel-
opers first try perturbing the code until the answers produced for
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problematic inputs appear correct [25, 38]. This process can be te-
dious and frustrating, and may only temporarily mask the error if
the test inputs are not representative.

Developers may also respond to rounding error by increasing
precision, the size of the floating point representation. A developer
might replace a 32-bit single precision float with a 64-bit double
precision float to try to shift error to lower order bits. But even the
largest hardware-supported precision may still exhibit unacceptable
rounding error, and increasing precision further would require
simulating floating point in software, incurring orders of magnitude
slowdown.1

Lastly, knowledgeable developers may turn to formal numerical
analysis to produce accurate programs: programs whose results
are close to the ideal real-number results. The numerical analysis
literature includes forward and backward error analysis to quantify
the error of a program [20, 23], and program transformations
which can improve program accuracy [17, 19]. Unfortunately, these
techniques often require understanding the subtle details of floating
point arithmetic, and the process is still slow and complicated.

As a step toward addressing these challenges, we introduce Her-
bie, a tool that automatically discovers accuracy-improving program
transformations. Herbie’s heuristic search randomly samples inputs,
localizes error, generates candidate rewrites, and merges rewrites
with complementary effects. In order to evaluate the error of a
floating-point expression, Herbie first samples input points and com-
pares results computed with floating point to results computed with
arbitrary precision. Herbie identifies which operations contribute
most to this error by comparing intermediate results from the two
computations. Herbie then applies a database of rewrite rules and
performs series expansion to generate alternatives for the identified
operations. Finally, Herbie combines alternatives that improve ac-
curacy in different input regions to produce a single program that
improves accuracy across all regions.

Herbie complements recent work in analyzing and verifying
floating-point programs [4, 6, 10]. These tools can help guarantee
that a program achieves its specified accuracy bounds. However,
when a program is not sufficiently accurate, these tools do not
directly help the developer improve the program’s accuracy. Her-
bie helps the programmer by automatically discovering accuracy-
improving transformations. While the transformations Herbie dis-
covers typically correspond to techniques from the numerical meth-
ods literature, Herbie does not statically analyze programs and so
cannot provide worst-case error bound guarantees. If an applica-
tion requires verified error bounds, the analysis and verification
techniques mentioned above can be applied to Herbie’s output.

1 Even arbitrary precision floating point can exhibit rounding error if the user
selects insufficient precision, so the developer needs expertise to carefully
select a precision that provides sufficient accuracy [38]. Our approach to
selecting this precision is outlined in Section 4.1.



We evaluate Herbie on examples drawn from a classic numerical
methods textbook [19] and consider its broader applicability to
floating point expressions extracted from a mathematical library
as well as formulas from recent scientific articles. Our results
demonstrate that Herbie can effectively discover transformations
that substantially improve accuracy (recovering up to 60 bits lost
to rounding error) while imposing a median overhead of 40%.
Furthermore, Herbie has already been applied by colleagues in
machine learning who were able to significantly improve the results
of a clustering algorithm. Authors of a mathematical library, Math.js,
have accepted two patches generated using Herbie, which improved
the accuracy of several complex number routines.

This paper contributes Herbie, a tool for automatically improving the
accuracy of floating point expressions. Herbie provides the following
subsystems:

• A method to evaluate the average accuracy of a floating-point
expression (Section 4.1).
• A technique for localizing the source of rounding error (Sec-

tion 4.3).
• An algorithm to flexibly apply sequences of rewrites and simplify

the results (Sections 4.4 and 4.5).
• A Laurent series expander which supports transcendental and

non-analytic functions (Section 4.6).
• An approach to inferring regimes where the error behavior of a

program differs (Section 4.8).

Herbie and its subsystems also provide a foundation for others to
build upon when exploring floating point accuracy issues. We have
published the full Herbie implementation.2

The rest of the paper describes Herbie in detail. Section 2
provides a brief background on floating point arithmetic. Section 3
illustrates Herbie on a representative example. Section 4 details
Herbie’s subsystems and describes their role in Herbie’s heuristic
search for accuracy-improving program transformations. Section 5
illustrates Herbie’s effectiveness at correcting real-world floating
point inaccuracies. Section 6 evaluates Herbie’s effectiveness by
considering a suite of textbook rounding error problems, as well as
a larger corpus of real-world floating point expressions. Section 7
surveys the most closely related work, and Section 8 considers future
directions for Herbie.

2. Floating Point Background
Floating point numbers are a bounded-size approximation of the
set of real numbers. Each floating point number represents a real
number of the form

±(1 +m)2e,

where m, the significand (also called the mantissa), is a k-bit
number in [0, 1), and e, the exponent, is an l-bit signed integer.3

Floating point numbers come in a variety of precisions; for example,
IEEE 754 double-precision floats are represented by a sign bit, a
52 bit significand, and an 11 bit exponent, while single-precision
floats are represented by a sign bit, a 23 bit significand, and an 8 bit
exponent. Since their exponents are distributed uniformly, floating
point values are distributed roughly exponentially, allowing very
large and very small values to be represented.

2 At http://herbie.uwplse.org
3 IEEE 754 floating point also represents a few special values: positive and
negative infinity, positive and negative zero, not-a-number error values, and
subnormal numbers of form ±m2−(2(l−1)−1).

Floating point operations use a rounding mode,4 a function to
convert real numbers to floating-point numbers. Let F(r) denote the
rounded floating point value of real number r and R(f) denote the
real number represented by the floating point value f . The rounding
mode must guarantee that F(R(x)) = x and also that R(F(x)) is
one of the two closest floating point values to x.

2.1 Error of Floating-Point Functions
Since a floating point value can only exactly represent a real number
of the form ±(1 +m)2e, the conversion F must introduce error for
some inputs. For real numbers neither too large nor too small (that is,
whose logarithm in base 2 is between−2l−1+2 and 2l−1−1), this
error is only due to insufficient precision in the significand. Thus,
the error is approximately 2−k times smaller than the output itself.
For example, the rounding error for reals near one quadrillion is
approximately 0.125 in double precision. We write F(x) = x+ xε,
where ε is the floating point conversion error5 and is of absolute
value less than 2−k, and where applications of F to different inputs
will result in different errors ε.

Primitive arithmetic operators on floating point numbers such
as addition and multiplication are guaranteed to produce accurately
rounded results. For example, the floating point sum x+y of floating
point values x and y is guaranteed to be equal to the real-number
sum of x and y, rounded: F(R(x)+R(y)). The addition x+y of two
floating point values x and y thus has real value x+ y + (x+ y)ε.

Operators such as exponentiation and trigonometric functions
are usually not computed in hardware and must be implemented
by libraries.6 Due to the table maker’s dilemma [27], these more
complicated functions cannot provide similar accuracy. Instead, the
implementation of a mathematical function f(x1, x2, . . . ) typically
guarantees that its result is among the 2u closest floating point
values to the exact result F(f(R(x1),R(x2), . . . )) (within u ulps).
For example, exp(x), for a floating point value x, will have value
ex + uexε. Typically, u is less than 8, guaranteeing that all but the
two or three least-significant bits are correct.

Since the ε is small, individual operations are accurate. However,
combining these individual operations might still produce inaccurate
programs, because floating-point error is not compositional.

2.2 Non-compositional Error
Though individual floating-point operations are accurate, formulas
that combine these operations can still be inaccurate. For example,
consider the expression (x+ 1)− x = 1. The addition introduces
error ε1 and produces x + 1 + (x + 1)ε1. The subtraction then
introduces ε2 and produces

1 + (x+ 1)ε1 + ε2 + (x+ 1)ε1ε2.

The ε2 term is small compared to the true value 1, but (x + 1)ε1
(and, for very large x, even (x + 1)ε1ε2) may be large if x is
large. Thus, for large values of x, this expression may have large
error: the expression may incorrectly evaluate to 0, or to some large
quantity (depending on the rounding mode). So even though all
intermediate computations are accurate, the whole expression is
inaccurate. Situations where large values are subtracted to produce
a small value occur in real-world formulas, such as the quadratic
formula (see Section 3); such “catastrophic cancellation” can cause
large rounding error.

4 Applications can choose between either rounding up, down, or toward zero;
or rounding to the mathematically closest value, with ties breaking either
toward the value with a zero least significant bit, or away from zero.
5 ε is often called “machine epsilon”, though it is due to the floating-point
representation and precision, not to specifics of the hardware.
6 The x87 implements these functions in hardware; SSE and NEON do not.

http://herbie.uwplse.org
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Figure 1. Herbie’s process for improving program accuracy.

For −1 < x < 1, this expression exhibits little error, but as
x grows larger, the error grows as well. In general, complicated
expressions often exhibit multiple input regions with distinctly
different error behavior. We call this phenomenon non-uniform error,
and have found that handling it is an essential part of improving the
accuracy of floating-point programs.

2.3 Rearrangement
To correct inaccurate formulas, programmers must rearrange their
computations to avoid rounding error. These rearrangements are
often based on identities of real-number arithmetic. For example, to
avoid catastrophic cancellation in (1+x)−x, one could reassociate
into 1+ (x−x), which simplifies to 1 and is exactly accurate. Note
that many real-number identities, including associativity, are false
for floating-point arithmetic, which is why they change the floating-
point results and thus have the potential to improve accuracy.

The necessary rewrites can be unintuitive. Richard Ham-
ming [19] provides the example of computing

√
x+ 1 −

√
x.

The naive translation to floating point is inaccurate for large posi-
tive numbers due to catastrophic cancellation. Hamming’s solution
involves rearranging this expression into 1/(

√
x+ 1 +

√
x) using

the difference-of-squares identity. Herbie’s heuristic search is well
suited to finding such rearrangements.

3. Overview
Consider the familiar quadratic formula:

−b−
√
b2 − 4ac

2a
(1)

This form, found in high-school algebra textbooks, is inaccurate
for negative b and large positive b when translated naively to a
floating point computation. This expression is prone to two types
of rounding error: for negative b, cancellation between −b and√
b2 − 4ac; and for large positive b, overflow in computing b2.

(Other types of error may also occur, but we focus on these two
errors in this example, as these are the two largest sources of error in
this expression.) Herbie can automatically produce a more accurate
version using all of Herbie’s major subsystems (see Figure 1).

To begin, Herbie must determine that the expression (1) in
fact has the floating point inaccuracies described. To do this, Her-
bie chooses 256 inputs at random and compares the answers pro-
duced by (1) in floating-point and arbitrary-precision mode (see
Section 4.1). The arbitrary-precision evaluation produces an exact
answer, so the difference between the two is caused by rounding
error. Having evaluated the error, Herbie can now proceed to avoid
it by modifying the program.

For negative b, the error is caused by cancellation at the outer
subtraction in the numerator

(
−b−

√
b2 − 4ac

)
. For b2 much

larger than a or c, the discriminant
√
b2 − 4ac approximately equals√

b2. But for negative b,
√
b2 = −b, so

(−b)−
√
b2 − 4ac ≈ (−b)− (−b),

subtracting two large values to compute a small result and causing
catastrophic cancellation.

To avoid this cancellation, Herbie must rewrite equation (1) to
avoid subtracting terms with nearby values. Herbie begins by local-
izing the error to the operation responsible for it (see Section 4.3).
Herbie does this by computing, for each operation, a locally approx-
imate result, the result of applying the operation, as a floating-point
operator, to exactly-computed arguments (see Section 4.1). The er-
ror of the locally-approximate result measures the extent to which
that operation contributes to the error of the program as a whole. In
the case of equation (1), localization identifies the subtraction of −b
and
√
b2 − 4ac as the main source of error.

Once a source of error has been identified, Herbie attempts
to eliminate this error by rewriting the operation which causes
it. Herbie does this by applying a database of rewrite rules, each
describing basic arithmetic facts. Each rule which matches at the
problematic operation is applied to produce a rewritten program; if a
rule’s top-level pattern matches, but subpatterns do not, Herbie also
attempts to rewrite the expression’s children until those subpatterns
match (Section 4.4). By applying the rewrite rule x− y  (x2 −
y2)/(x+ y) to the problematic subtraction found by localization,
Herbie produces

(−b)2 −
(√
b2 − 4ac

)2
(−b) +

√
b2 − 4ac

/2a (2)

Other applicable rewrite rules produce ten other rewritten programs.
So far, none of these rewrites significantly improve accuracy. How-
ever, the program in (2) can be simplified to produce a program that
avoids the catastrophic cancellation by algebraically cancelling the
two b2 terms.

Herbie uses a specialized simplification pass to cancel these
terms (Section 4.5). Simplification discovers a sequence of five
rewrite rules which transform the program in (2) into

4ac

(−b) +
√
b2 − 4ac

/2a (3)

Herbie only simplifies the children of a rewritten node, and so does
not further simplify this expression.

For negative b, the program in (3) is much more accurate than
the original (1). However, for positive b, it is less accurate than
the original, due to cancellation at the addition in the denominator.
Herbie notes that programs (1) and (3) are each more accurate
on some points than the other, and keeps both as alternatives for
further consideration. Eventually, Herbie will have to combine both
candidates into a single program that is accurate for both positive
and negative b.

Before this combination takes place, Herbie also attempts to fix
the inaccuracy of both (1) and (3) for large positive b. When b is
positive and greater than approximately 10127, b2 overflows, result-
ing in floating-point infinity. This causes the entire expression (1) to
evaluate to infinity, even though its actual value is finite. To avoid
the problems caused by overflow, a series expansion in b about in-
finity can be used. Using the approximation

√
1 + x ≈ 1 + 1

2
x, the

numerator of (1) can be rewritten as

−b
√

1− 4ac
b2
− b

2a
≈
−b(1− 2ac

b2
)− b

2a
= − b

a
+
c

b
(4)

Herbie uses series expansion based on symbolic evaluation (Sec-
tion 4.6) to compute this approximate form, which is more accurate
than either (1) or (3) for large positive b.

Herbie has now discovered three separate candidates, each of
which is accurate on certain inputs: candidate (3) for negative b,
candidate (4) for large positive b, and candidate (1) for all others.
To produce an accurate output program, Herbie’s regime inference
algorithm (Section 4.8) combines the three candidates by inferring



an if statement to select between them based on the value of b. The
final program produced by Herbie is

4ac

−b+
√

b2−4ac
/2a if b < 0(

−b−
√
b2 − 4ac

)
1
2a

if 0 ≤ b ≤ 10127

− b
a
+ c

b
if 10127 < b

This program is considerably more accurate than the original (see
test case quadm in Section 6). The series expansion for large positive
bmakes it more accurate than the form described in common surveys
and textbooks [17, 19], which omit the 10127 < b case.

In summary, Herbie localizes error to certain operations, applies
rewrite rules at those operations, and simplifies the results; series
expansion allows Herbie to handle inaccuracies for particularly large
or small input values; and regime inference allows these techniques
to work together by combining several candidate programs into one.

4. How Herbie Improves Accuracy
Herbie improves program accuracy through a heuristic search, using
the accuracy of candidate programs to guide its search. Herbie’s
goal is to produce a program whose semantics, as a floating point
program, matches, as closely as possible, the input program’s
semantics as a real-number formula.

4.1 Sampling Points
Herbie uses sampled input points to estimate the accuracy of
candidate programs. These input points are sampled uniformly
from the set of floating point bit patterns. That is, each sampled
point is a combination of a random mantissa, exponent, and sign
bit. By sampling exponents uniformly, Herbie generates both very
small and very large input points, as well as inputs of normal size,
allowing Herbie to improve programs which are inaccurate only for
particularly large or small values.7 Herbie uses 256 random sample
points to guide its search; we’ve found that this number of samples
estimates program accuracy sufficiently well.

To evaluate the accuracy of a candidate program, Herbie also
must know the output generated by the real-number semantics of
the original program on the sampled input points. Herbie uses arbi-
trary precision floating point using GNU MPFR [16] to approximate
this output. Arbitrary precision floating point does not immediately
banish inaccuracy and rounding error, because a working preci-
sion must still be selected. In contrast to arbitrary-precision inte-
gers, whose precision can be dynamically expanded as necessary,
arbitrary-precision floating-point needs a fixed precision to be cho-
sen. If the chosen precision is too small, the arbitrary-precision
evaluation will suffer from rounding error, much like ordinary float-
ing point.

Selecting the right precision is difficult, as accuracy does not
improve smoothly with precision. For example, consider the pro-
gram ((1 + xk) − 1)/xk at x = 1

2
. Until k bits of precision are

available, the computed answer is 0, even though the correct result
is 1. Once k bits are available, the correct answer is computed ex-
actly. A similar pattern occurs with many real-world programs. To
avoid this problem, Herbie increases the working precision until the
first 64 bits of the computed answer do not change for any sampled
input point. We have found this method to select a sufficiently large
working precision for arbitrary precision evaluation (see Section 6),
allowing us to compute the exact floating point result. As many as
2989 bits are required for computing the exact floating-point results
for our test cases (see Section 6).

7 This sampling is approximately exponential. Uniform distributions over
the reals fail to capture the structure of floating-point values and prevent
Herbie from improving any but the most trivial examples.

Definition herbie-main(program) :

points := sample-inputs(program)
exacts := evaluate-exact(program, points)
table := make-candidate-table(simplify(program))
repeatN times

candidate := pick-candidate(table)
locations := sort-by-local-error(all-locations(candidate))
locations.take(M)
rewritten := recursive-rewrite(candidate, locations)
new-candidates := simplify-each(rewritten)
table.add(new-candidates)
approximated := series-expansion(candidate, locations)
table.add(approximated)

return infer-regimes(table).as-program

Figure 2. Herbie chooses sample points and computes exact
outputs, and enters the main loop. At each step of the loop, a
candidate explored by focusing on expressions with local errors,
rewriting those expressions, and simplifying the results. Extra
candidates are generated by series expansion. After the loop is done,
regime inference combines these candidates into a single program.
In our evaluation, we used N = 3 and M = 4 (see Sections 6.1).

Once sample points are chosen, and exact and floating-point an-
swers are computed, some metric for error is necessary to compare
the two. Absolute and relative error are natural mathematical mea-
sures, but both of these measures are ill-suited to measuring the error
between floating-point values [38]. We follow STOKE [36] in defin-
ing error as (the base-2 logarithm of) the number of floating-point
values between the approximate and exact answers:

E(x, y) = log2 |{z ∈ FP | min(x, y) ≤ z ≤ max(x, y)}|
Intuitively, this counts the number of most-significant bits that the
approximate and exact result agree on.8 A program’s error at a
point is then the difference between the exactly computed floating-
point prefix and the answer computed using floating point semantics.
Programs are compared by their average bits of error over all valid
inputs. This measure of error is invariant over the input space and
avoids special handling for infinite and subnormal values. As a
happy by-product, Herbie treats overflow and underflow identically
to rounding error of any other kind, and can automatically prevent
it.

4.2 The Main Loop
Since the space of possible floating point programs is vast, Herbie
does not try to synthesize an accurate program from scratch. Instead,
Herbie applies a sequence of rewrite rules to its input, each of which
may change the floating-point semantics. These rules are specified
as input and output patterns; for example, x− y  (x2 − y2)/(x+
y) is a rule, with x and y matching arbitrary subexpressions.
Herbie contains 126 rules, including those for the commutativity,
associativity, distributivity, and identity of basic arithmetic operators;
fraction arithmetic; laws of squares, square roots, exponents, and
logarithms; and some basic facts of trigonometry. Each of these
rules is a basic fact of algebra, and incorporates no knowledge of
numerical methods. We avoid rewrite rules that aren’t true for real-
number formulas, so that Herbie does not waste time producing
programs that compute expressions unrelated to the input program.9

8 Note that this can be as many as 64 bits (for double-precision values), even
though the mantissa is only 53 bits long. This happens if the two values
differ by orders of magnitude. For example, if a computation should return 0
but instead returns 1, it has approximately 62 bits of error.
9 As discussed in Section 6, adding “unsound” rewrite rules would slow
Herbie down, but would not impact its output.



Definition local-error(expr, points) :
for point ∈ points :

args := evaluate-exact(expr.children)
exact-ans := F(expr.operation.apply-exact(args))
approx-ans := expr.operation.apply-approx(F(args))
accumulate E(exact-ans, approx-ans)

Figure 3. To compute the local error of a subexpression, compute
the exact value of its arguments, and evaluate its operator to its
arguments both in floating point and exactly. The difference between
these two values is the local error at that location.

Avoiding such rules was usually easy, but required some care to
avoid false “identities” such as

√
x2 = x, which is true only for

positive x.
Herbie uses a greedy, hill-climbing search to apply this database

of rules: it tracks a set of candidate programs, applies rules at various
locations in these candidates, evaluates each resulting program, and
repeats the process on the best candidates. However, a naive imple-
mentation of this process would spend too much time on useless
rewrites, have difficulty finding rewrites that enable future useful
rewrites, and would rarely be able to algebraically cancel terms. So
Herbie uses specialized localization, rewriting, and simplification al-
gorithms to prune the set of applicable rewrites, consider sequences
of dependent rewrites as a unit, and automatically cancel terms.
Furthermore, rewrite rules are not suited to deriving polynomial ap-
proximations, so Herbie also has a specialized series expansion pass
to handle inaccuracies near 0 and ±∞. After the main loop finishes,
Herbie uses regime inference to infer a program that branches be-
tween different candidates based on the input values. The remainder
of this section explains each of these techniques in detail.

4.3 Localizing Error
Even small programs admit exponentially many possible rewrites;
Herbie prunes this search space by identifying those rewrites which
are likely to improve accuracy. To do this, Herbie localizes the
error of the program to individual operations and then rewrites the
operations responsible for the most error. Localization reflects the
intuition that operations which are already accurate can be left alone.

Herbie focuses on operations with high local error, the error
between an operation’s floating-point and exact evaluations when
its arguments are computed exactly (see Figure 3). By exactly
evaluating arguments, Herbie avoids penalizing operations for errors
in their inputs (garbage in, garbage out). For each operation, Herbie
averages the local error for all sample points, and focuses its rewrites
at the operations with the highest average.

4.4 Recursive Rewrite Pattern Matching
After localizing the error to a particular operation, Herbie applies
rewrites from its database to that location. Each rewrite replaces
the operation with a different, potentially more accurate, way of
computing the same value. One approach would be to simply apply
each matching rule; however, this would fail to discover many
important sequences of rewrites. A common problem is that an
expression may require multiple rewrites to enable a rewrite that
actually improves accuracy. For example, consider the expression(

1

x− 1
− 2

x

)
+

1

x+ 1
.

Herbie correctly identifies the (+) operator as having the highest
local error (it adds terms of similar magnitude and opposite sign).
To improve the accuracy of this program, all of the fractions must be
placed over a common denominator, and then the numerator must
be simplified.

Definition recursive-rewrite(expr, target) :
. select and where are non-deterministic choice and requirement
select input output from RULES
where input.head = expr.operator ∧ output.head = target.head
for (subexpr, subpattern) ∈ zip(expr.children, input.children) :

if ¬matches(subexpr, subpattern) :
recursive-rewrite(subexpr, subpattern)

where matches(expr, input)
expr.rewrite(input output)
. Collect valid non-deterministic executions into a list of candidates

Figure 4. To recursively rewrite an expression, pick a rewrite rule
which matches the current operator and produces the desired target
operator. Recursively rewrite each subexpression that does not match
its subpattern in the rule’s input pattern. Ensure that the results of
rewriting each child now match the chosen rewrite rule; if this
rewrite rule repeats a pattern variable, it may not match even after
rewriting all subexpressions. Each valid set of choices describes one
possible recursive rewrite of the expression.

Herbie has rules for fraction addition and subtraction; however,
doing a single fraction addition or subtraction does not significantly
change the accuracy of the program, since accuracy loss is caused
by a cancellation that occurs when all of the fractions are added
together. In order to improve the accuracy of this program, Herbie
must use the fraction addition/subtraction rules twice: once on the
parenthesized subtraction,(

1

x− 1
− 2

x

)
+

1

x+ 1
 

x− 2 (x− 1)

(x− 1)x
+

1

x+ 1

then again for the remaining addition,

x− 2(x− 1)

(x− 1)x
+

1

x+ 1
 

(x− 2(x− 1))(x+ 1) + (x− 1)x

(x− 1)x(x+ 1)
,

which can later be simplified to 2/(x3 − x). Finding this sequence
of rewrites by brute force search would be difficult because of the
large number of rules that can apply at each step, and the large
number of locations at which a rewrite might be necessary. However,
in this example and in many others, the first rewrite occurs at a
child of the focused-upon expression, and enables a later rewrite
at the focused-upon expression. Herbie’s recursive rewrite pattern
matching algorithm (see Figure 4) automatically handles this case by
rewriting each subexpression of an expression, recursively, to match
its associated pattern in the rule. On the benchmarks from section 6,
this recursive algorithm produces dozens of rewrite sequences for
each focused location; they vary from one to eight rewrites in length.

4.5 Simplification
After applying a rewrite rule at an expression, it may become
possible to cancel terms, and this is often necessary to improve
accuracy. For example, as detailed above, Herbie produces the
numerator (x−2(x−1))(x+1)+(x−1)x, which must be simplified
to 2 to reduce error. Simplifying expressions would be difficult
with localization and recursive rewriting, since simplification often
requires making changes far from the source of the error, so Herbie
uses a specialized simplification pass. Simplification is applied after
each recursive-rewrite step. It automatically cancels terms, which
can otherwise contribute to catastrophic cancellation, and avoids
redundant computations, which can accumulate error. Generally, the
goal of simplification is to produce a smaller, equivalent program.

Simplification often needs to perform commutations, reassocia-
tions, and other transformations which do not themselves simplify
expressions, in order to enable rewrites that cancel terms or other-
wise simplify the expression. Herbie solves this problem by creating



Definition simplify(expr) :
iters := iters-needed(expr)
egraph := make-egraph(expr)
repeat iters times :

for node ∈ egraph :
for rule ∈ SIMPLIFY-RULES :

attempt-apply(rule, node)
return extract-smallest-tree(egraph)

Definition iters-needed(expr) :
if is-leaf(expr) :

return 0
else :

sub-iters := map(iters-needed, expr.children)
iters-at-node := if is-commutative(expr.head) then 2 else 1
return max(sub-iters) + iters-at-node

Figure 5. Herbie simplifies expressions by creating an equivalence
graph [31], and applying rewrite rules at all nodes in the graph. The
number of times each rewrite rule is applied depends on the height
of the expression and the number of commutative operators within
it. From the final equivalence graph, Herbie chooses the program
represented by the smallest tree. Programs are simplified after each
rewrite step, and Herbie simplifies only the children of the node
which was most recently rewritten.

an equivalence graph [31] of programs reachable from the input
via a small number of rewrites (see Figure 5). The equivalence
graph allows the simplification algorithm to implicitly handle de-
pendencies between rewrites. Simplification uses a subset of the
rewrite database that includes rules to remove function inverses (as
in (
√
x)

2  x), cancel like terms (as in x− x 0), and rearrange
terms (as in x+ (y + z) (x+ y) + z).

Herbie makes three modifications to the traditional equivalence
graph algorithm. First, Herbie only simplifies the children of the
expression that was rewritten, which usually restricts simplifica-
tion to small expressions while still allowing the most important
rewrites. Second, Herbie allows certain transformations to prune
the equivalence graph, removing all other items from their equiva-
lence class; for example, when an expression reduces to a constant
value, the equivalence class containing that expression is pruned to
contain only the literal value, since a literal is always the simplest
way to express a constant value. Third, Herbie does not attempt to
expand the equivalence graph to contain all possible sequences of
rewrites—Herbie does not attempt to saturate the graph. Instead,
Herbie bounds the number of iterations (see iters-needed in Fig-
ure 5) to the number necessary to cancel two terms anywhere in the
expression. From the final equivalence graph, Herbie chooses the
program represented by the smallest tree.

4.6 Series Expansions
Some expressions have rounding error for inputs near zero or infinity,
but no expression with better accuracy can be found just by applying
rewrite rules. It is often possible to avoid this rounding error by using
polynomial approximations. For example, the expression ex − 1 is
inaccurate near x = 0, since ex is near 1 for those inputs, leading
to catastrophic cancellation. No way of rearranging this expression
avoids the cancellation error; however, for x near 0, the polynomial
approximation x + 1

2
x2 + 1

6
x3 is accurate. Such approximations

improve accuracy in many cases, and often help avoid over- and
under-flow.

Herbie’s series expansion procedure proceeds from the bottom
up: each variable or constant is turned into a trivial series, and each
function application combines the series expansions of its arguments
as dictated by standard mathematical formulas. A series expansion

of an expression e in one variable is represented by an offset d and
a stream c of coefficients such that

e[x] = c0x
−d + c1x

1−d + c2x
2−d + · · ·

Note that the series starts not at a constant term, but at x−d. This
allows handling expressions with reciprocal terms, and allows
accurate series expansion when two reciprocal terms cancel, such
as in the expression 1

x
− cotx. Each coefficient cn is a symbolic

expression; if a term has no series expansion (such as e1/x), it is
placed into the constant term c0 of the series expansion; for example,
the series expansion of e1/x + sinx is

e1/xx0 + 1x1 + 0x2 +
1

3
x3 + · · ·

Series expansions at ∞ are also performed, in which case the
exponents in the series count down from xd instead of up from
x−d. For expressions with multiple free variables, an analogous
multivariate series expansion is used. When truncating series, Herbie
uses the three nonzero terms with the smallest degree; we’ve found
this sufficient for the regimes that series expansions are used in.

4.7 Candidate Programs Table
Between iterations of the core loop, Herbie prunes the set of
candidate programs, keeping only the ones that achieve the best
accuracy on at least one sample point. These are exactly the
programs that will be useful for regime inference. In each iteration
of the main loop, Herbie picks a program from the table, uses it to
generate new candidate programs, and adds them back to the table,
pruning it to a minimal set.

Once a program has been picked from the table, it is marked
so that it will not be picked again. This means that eventually all
programs that are one step away from any program in the table will
be found and iterated on, resulting in a “saturated” table. We found
that in practice, running until the table reaches saturation does not
give better results than running for 3 iterations.

Herbie stores the set of candidate programs as a pair of maps: one
from points to a set of alternatives that are tied for best at that point,
and the other from alternatives to the points they are tied for best
at. A candidate is added to the set only if it is better at some point
than the currently best alternatives for that point. After a candidate
is added, there may be existing candidates which are no longer best
on any point; Herbie prunes these candidates to a minimal set.

Because programs can have equal accuracy on a given point,
pruning to the minimal set of programs is algorithmically challeng-
ing. For example, consider a set of three candidates on three points:
candidate 1 is best at point 1; candidate 3 at point 3; and all are tied
at point 2. Herbie must prune candidate 2, since discarding it does
not decrease accuracy. When multiple candidates are tied, picking
a minimal set is an instance of Set Cover, which is known to be
NP-hard. Herbie uses a variant of the O(logn) Set Cover approxi-
mation algorithm [9] to solve this problem. There are often points
with a unique best candidate; these candidates cannot be pruned,
so Herbie removes both these candidates and any points they are
best at from the Set Cover instance before using the approximation
algorithm. Pruning keeps the size of the candidate set small—on
the benchmarks from Section 6, we have not seen a candidate set of
more than 28 programs, even though as many as 285 programs are
generated before pruning.

4.8 Regime Inference
Often no candidate program is most accurate on all inputs; instead,
each performs well on some inputs, and not on others. For example,
to improve the quadratic formula (discussed in Section 3), Herbie
must combine three expressions. A similar pattern occurs in many
real-world programs, with different expressions accurate on different



Definition infer-regimes(candidates, points) :
for xi ∈ points :

best-split0[xi] = [regime(best-candidate(−∞, xi),−∞, xi)]
for n ∈ N until best-splitn+1 = best-splitn :

for xi ∈ points ∪ {∞} :
for xj ∈ points, xj < xi :

extra-regime := regime(best-candidate(xj , xi), xi, xj)
option[xj ] := best-split[xj ] ++ [extra-regime]

best-splitn+1[xi] := lowest-error(option)
if best-splitn[xi].error − 1 ≤ best-splitn+1[xi].error :

best-splitn+1[xi] := best-splitn[xi]
split := best-split∗[∞]
split.refine-by-binary-search()
return split

Figure 6. Regime inference via a dynamic programming algorithm.
Instead of computing the best way to split (−∞,∞), compute the
best way to split (−∞, xi), for all xi. This problem admits a simple
dynamic program. The best split of (−∞, xi) into n+ 1 regimes is
just the best way to split (−∞, xj) into n regimes plus one regime
between (xj , xi); or, it is the best split of (−∞, xi) into just n
regimes. So, add regimes until the best split does not change; then
take the best split of (−∞,∞). After the best split is found, the
boundary between each pair of regimes is refined by binary search.

input regions, which we call regimes. Herbie’s regime inference
algorithm automatically detects which programs to use on which
inputs. Regime inference also ensures that accuracy on one input
region does not come at the cost of error in another region. This is
particularly valuable for series expansions, which by their nature
are often accurate only for some input regions.

Herbie finds the optimal set of branches using a variant of the
Segmented Least Squares dynamic programming algorithm (as
described in Kleinberg and Tardős [26]). The dynamic program
computes the optimal set of at most k regimes in (−∞, xi), where
xi is a sampled point, which has the optimal substructure property
required for dynamic programming; see Figure 6 for details. Once
Herbie has determined that a branch should be placed between two
sampled points, it uses a binary search on the chosen variable to find
the exact location of the regime boundary.

Of course, too many branches are likely to over-fit the sampled
points; imagine, for example, a program which uses a different
expression for each input point. Regime inference must also balance
the potential benefit of adding a branch against the cost of doing so:
branches can improve accuracy, but are computationally expensive.
This balance is implemented by penalizing programs with branches
(by one bit of error per branch) in the regime inference algorithm.

5. Case Studies
This section describes three examples where Herbie improved the
accuracy of real-world programs: in two cases, Herbie found an
accuracy problem in a numerical library, and produced a fix; in the
other, Herbie improved the results of a clustering algorithm.

Complex Square Roots Herbie demonstrated utility on real-world
library code by finding an inaccuracy in an open-source JavaScript
math library, Math.js [13]. Among other functions, Math.js supports
operations on complex numbers. To compute the real part of the
square root of a complex number x+ iy, Math.js used the expres-
sion 1

2

√
2 (
√
x · x+ y · y + x), which is a standard mathematical

definition. However, for negative x (especially when y is small), this

expression is inaccurate. Herbie synthesized a more-accurate form
of this expression, which for negative x computes

1

2

√
2

y2√
x · x+ y · y − x

This improvement was implemented as a patch to Math.js, accepted
by the Math.js developers, and released with version 0.27.0 of
Math.js [32].

Complex Sine and Cosine Herbie found a second inaccuracy in
Math.js when we introduced series expansion as a technique Herbie
could apply. Math.js used to compute the imaginary part of the
cosine of x+ iy with the expression 1

2
(sinx)(e−y − ey). For small

values of y, the two exponentials would cancel catastrophically,
causing the result to have a zero for its imaginary part, instead of
a small non-zero value. Herbie synthesized a more-accurate form
of this function for small values of y, using a series expansion for
e−y − ey:

−(sinx)
(
y +

1

6
y3 +

1

120
y5
)

Herbie also found similar improvements to the complex sine routine
and to the hyperbolic sine routine. All three improvements were im-
plemented as a patch to Math.js, accepted by the Math.js developers,
and released with version 1.2.0 of Math.js [33].

Probabilities in a Clustering Algorithm Herbie has also been use-
ful to practitioners who are not directly interested in numerical
accuracy. A colleague researching machine learning recently had
difficulties with a Markov chain Monte Carlo update rule in a clus-
tering algorithm: the update rule would produce spurious negative or
very large results, leading to poor clustering. Our colleague needed
to compute

(sig s)cp(1− sig s)cn

(sig t)cp(1− sig t)cn
,where sig x =

1

1 + e−x

Our estimates suggest that this simple encoding produces seventeen
bits of error. In an attempt to improve the clustering, our colleague
manually manipulated the expression until the performance of
clustering algorithm improved; our estimates suggest that this
improved variant had ten bits of average error:(

1 + e−t

1 + e−s

)cp ( 1 + et

1 + es

)cn

When we fed the original, naive implementation to Herbie it pro-
duced an improved version of the program with only four bits aver-
age error:

exp

(
cp ln

1 + e−t

1 + e−s
+ cn ln

1− 1
1+e−s

1− 1
1+e−t

)
Further manipulations do not improve accuracy, so Herbie does not
perform them. In this case, Herbie produced superior results with
no need for manual algebraic manipulation.

6. Evaluation
In addition to the case studies described above, we evaluated Her-
bie on benchmarks drawn from Hamming’s Numerical Methods
for Scientists and Engineers (NMSE) [19], a standard textbook for
applying numerical analysis to scientific and engineering computa-
tions. We also separately evaluate our error estimation technique and
our regime inference algorithm, and describe our tests of Herbie’s
wider applicability.

Our evaluation includes twenty-eight worked examples and
problems from Chapter 3, which discusses manually rearranging
formulas to improve accuracy, the same task that Herbie automates.



Double Precision

Average bits correct (longer is better)

0 8 16 24 32 40 48 56 64

3frac
2atan
2frac
2isqrt

2log
2cbrt
2sqrt
exp2

expax
logs

invcot
tanhf

sintan
cos2

quad2p
quadp

quad2m
2nthrt

quadm
2tan
2sin

expq2
expm1
sqrtexp

2cos
expq3

logq
qlog

Single Precision

Average bits correct (longer is better)

0 8 16 24 32

3frac
2atan
2frac
2isqrt
2log

2cbrt
2sqrt
exp2

expax
logs

invcot
tanhf

sintan
cos2

quad2p
quadp

quad2m
2nthrt

quadm
2tan
2sin

expq2
expm1
sqrtexp

2cos
expq3

logq
qlog

Figure 7. Each row represents the improvement in accuracy achieved by Herbie on a single benchmark. The thick arrow starts at the accuracy
of the input program, and ends at the accuracy of Herbie’s output. Accuracy is measured by the number of correct output bits, averaged across
100 000 random input points.

Four of the problems and examples are from the introductory section
of this chapter, which focuses on the quadratic formula (quadp,
quadm, quad2p, quad2m); twelve from the section on algebraic
rearrangement (2sqrt, 2tan, 3frac, 2frac, 2cbrt, 2cos, 2log,
2sin, 2atan, 2isqrt, tanhf, exp2); eleven from the section on
series expansion (cos2, expq3, logq, qlog, sqrtexp, sintan,
2nthrt, expm1, logs, invcot, qlog); and two from the section
on branches and regimes (expq2, expax). Each of Hamming’s
problems and examples is a single floating-point expression.

6.1 Improving Accuracy
We translated each example into a Herbie input and ran Herbie in
a standard configuration. Herbie was run twice: once optimizing
for single-precision performance, and once optimizing for double-
precision performance. The main text of this section describes
only the double-precision results; the single-precision results were
similar, as shown in Figure 7.

Herbie is currently implemented in 6.5 KLOC of Racket. The
main loop was capped at 3 iterations, and localization was limited
to choosing 4 expressions. All experiments were carried out on an
Intel Core i5-2400 with 6GB RAM running Arch Linux, Racket 6.1,
and GCC 4.9.1. For all of our benchmarks, Herbie ran in under 45
seconds.

Accuracy Our results are shown in Figure 7. For all of our test
programs, Herbie improves accuracy by at least one bit. Hamming
provides solutions for 11 of the test cases. Herbie’s output is less
accurate than his solution in 2 cases (2tan and expax) and more
accurate in 3 cases (2sin, quadm, and quadp); in the remaining
cases, Herbie’s output is as accurate as Hamming’s solution.

Overhead We timed the original program and the program pro-
duced by Herbie by compiling both to C, using GCC 4.9.1 with
flags -march=native, -mtune=native, -mfpmath=both, -O3,
and -flto. Figure 8 is the cumulative distribution of the slow-
down for Herbie’s output. The median program produced by Herbie
was 40% slower. Though Herbie’s search does not explicitly bal-
ance program speed against accuracy, simplification keeps programs
small, explaining the low overhead. Note that in a few cases, the
program produced by Herbie is faster than the input program. For
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Figure 8. Cumulative distribution of the slow-down from using
Herbie. The horizontal axis shows the ratio between the run-time
of the input and output programs. The black line is the overhead in
Herbie’s standard configuration; the gray line is the overhead when
regime inference is disabled.

these programs, Herbie found a series expansion which was accu-
rate for a large part of the valid input range, replacing an expensive
transcendental function with a simple polynomial expression. For
other programs, series expansion did not improve program speed
because the cost of a branch outweighed the simpler expression.

Error Estimation Each program was run on 100 000 points drawn
randomly from the set of double-precision floating point values.
Results were compared with a ground truth computed via the MPFR
arbitrary-precision library [16], which required between 738 and
2989 bits to compute an exact output for all double-precision
inputs. Accuracy was measured by the number of bits in error
in the approximate output, compared to the exact answer (as in
Section 4.1), and was averaged over all points for which the exact
answer was a finite floating point value.

6.2 Error Evaluation
For the figures above, we computed each program’s average er-
ror over 100 000 sampled points. By the Central Limit Theorem,
this estimate of average error has a standard error of at most



64/
√
100 000 ≈ 0.2 bits.10 Thus, measured improvements cor-

respond to actual improvements in program accuracy.
To check that sufficiently many bits were used in Herbie’s

arbitrary-precision evaluations, we compared each against an evalu-
ation with 65 536 bits of precision. In every instance, the answers
rounded to double precision were identical, demonstrating that Her-
bie used sufficiently many bits to compute its ground truth.

For each test case, almost all sampled points either had error less
than 8 bits or more than 48 bits; in other words, the distribution of
error for different inputs was highly bimodal. Thus, average error
roughly estimates how many valid inputs a program can evaluate
accurately. Herbie’s improvement to average error corresponds to
moving points from the high-error to the low-error category.

We also evaluated Herbie’s effect on maximum error, and found
that Herbie can significantly improve that metric as well. We
exhaustively tested Herbie’s single-precision output for four test
cases by enumerating all single-precision floating-point numbers.
In some cases, the improvement is modest, such as for 2isqrt,
where Herbie improves maximum error from 29.5 to 29.0 bits. More
dramatically, for 2sqrt, Herbie produces an output program with
at most 2 bits of error, even though the input program exhibits as
many as 29.8 bits of error. To evaluate max error for expressions
with more than one argument, and to evaluate error for programs in
double-precision, we also wrote a tool to sample millions of input
points11 and find the maximum error for all sampled points. Of the
twenty-eight programs, maximum error improved by more than one
bit for seven of them, and by more than a tenth of a bit for two more.

6.3 Regime Inference
We measured the overall effect of regime inference on the accuracy
and speed of Herbie’s output across our benchmarks. We reran
Herbie over our benchmark suite with regime inference disabled,
and compared this handicapped Herbie to Herbie in its default
configuration. Regime inference helps improve the accuracy of 17
of the 28 programs; Figure 9 graphs this improvement. Many of the
large improvements from regime inference are due to the way regime
inference enables powerful but specialized transformations. For
example, series expansions improve accuracy on many benchmarks,
but the candidates produced by series expansion are only accurate
on a limited range of input values. Without regime inference, series
expansion does not function; many of the improvements in Figure 9
are due not only to regime inference but also series expansion.
Since series expansion is used in many of the benchmarks to avoid
cancellation and overflow, regime inference affects many test cases.
The branches from regime inference added a median overhead of
7% (see Figure 8).

6.4 Extensibility
Real-world computations are likely to involve functions which
Herbie does not understand, or for which Herbie’s rule database
does not contain the necessary rules. So, it is important that Herbie
support user extensibility. We tested Herbie’s extensibility in two
ways: first, we tested that the user can add rules to solve examples
that Herbie doesn’t solve by default; and second, we tested that
adding invalid rules doesn’t make Herbie’s output less accurate.

The test case 2cbrt is the expression 3
√
x+ 1 − 3

√
x; Herbie

originally did not improve its accuracy, because its database of
rewrite rules did not include the difference of cubes formula x3 −
y3 = (x − y)(x2 + xy + y2). As a test of Herbie’s extensibility,

10 In our experiments, the standard error was an order of magnitude smaller
than the conservative upper bound given above.
11 Each program was sampled for 10 hours, with the most computationally
intensive test sampling 3.7 million inputs, and the least computationally
intensive sampling 96 million.
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Figure 9. Each arrow represents one of the 17 programs where
regime inference improves accuracy; the arrow points from the
accuracy without regime inference to the accuracy with regime
inference enabled. A dot is drawn at the accuracy of the original
program; note that in many of the cases, Herbie is unable to improve
accuracy without regime inference.

we added rules for the difference of cubes formula to Herbie (which
required five lines of code). Herbie, with this extended ruleset, is
able to improve the 2cbrt test case, and has exactly the same results
on all others. This suggests that users would be able to add custom,
domain-specific rules to handle cases where Herbie’s built-in rules
are not sufficient.

Adding rules to Herbie would be difficult if incorrect rules could
worsen its result. This does not happen: invalid rules do not increase
accuracy, so Herbie never keeps the results of applying them. To
test this, we added invalid rules to Herbie: for each pair of rules
p1  q1 and p2  q2, we added the dummy rule p1  q2, which
is usually invalid. Herbie was run, with these dummy rules, on the
main suite of 28 benchmarks; it achieved identical results as without
these rules, but ran twice as slowly. This suggests that there is no
burden on the user to carefully check the validity of rules they add
to Herbie, aiding Herbie’s extensibility.

6.5 Wider Applicability
Many numerical programs are not library functions or textbooks
examples, but are instead simulations or data analyses used by
scientists, engineers, and mathematicians in the course of their
work. The expressions encountered in these programs are more
complicated and less structured than the problems in NMSE. Herbie
has proven success in improving the accuracy of such programs (see
Section 5), but we also made a broader test of Herbie’s usefulness on
such expressions. We gathered mathematical formulas from a variety
of sources and tested both their numerical accuracy and Herbie’s
ability to fix any inaccuracies. These sources included papers from
Volume 89 of Physical Review; standard definitions of mathematical
functions, such as hyperbolic functions, or arithmetic on complex
numbers; and approximations to special functions like erf and ζ.

Of the 118 formulas gathered, we found that 75 exhibited
significant floating point inaccuracies. Of these 75 examples, Herbie
was able to improve 54 with no modifications and without enlarging
its database of rules. This is yet another confirmation that rounding
error can arise in the daily practice of scientists and engineers,
and that Herbie can often ameliorate these errors. However, it is
important to note that for these examples we have not determined if
inaccuracies arise for realistic inputs; and, for formulas Herbie was
unable to improve, whether a more accurate program exists.



7. Related Work
Program Transformations M. Martel proposed a bounded ex-
haustive search for algebraically-equivalent programs for which a
better accuracy bound could be statically proven [28]. Martel’s line
of work builds an abstract interpretation to bound rounding errors
using a sound over-approximation. His technique then generates a
set of programs equivalent over the real numbers, and chooses the
one with the smallest rounding error. Martel’s approach, since it is
based on abstract interpretation, generalizes well to programs with
loops [22]. However, the bounded exhaustive search limits the pro-
gram transformations that can be found, since a brute-force search
cannot scale with a large database of rewrites. It is also dependent on
accurate static analyses for error, which makes supporting transcen-
dental functions difficult. Herbie is fundamentally different from
Martel’s work in its use of sampling rather than static analysis, its
use of a guided search over brute-force enumeration, and its ability
to change programs without preserving their real semantics, such as
with series expansion.

Genetic programming and SMT synthesis have also been ex-
plored for synthesizing fixed-point programs for evaluating poly-
nomial expressions [11, 14]. Herbie does not support fixed-point
programs, and uses a variety of analyses, instead of genetic program-
ming or SMT, to prune and direct its search

Numerical Analysis Numerical analysis studies mathematical
computations as performed by computers. It includes a vast literature
on how to evaluate mathematical functions. The technique of
rearranging formulas appears in surveys [17, 24], and in common
textbooks [19, 20]. Herbie uses the techniques invented in this
literature, but rearranges formulas automatically, avoiding the need
for an expert. It is difficult to determine the working precision
necessary to accurately evaluate a function [27]. Recent work on
this problem allowed the creation of MPFR, an arbitrary-precision
floating point library with correct rounding [16]. Herbie uses MPFR
internally to exactly evaluate expression.

Verification of Numerical Code Floating point arithmetic is de-
fined in the IEEE 754 standard [21]. However, verification is diffi-
cult as programming languages often do not require adherence to
this standard [30]. Programs for computing discriminants [6] and
solving simple partial differential equations [7] have recently been
verified, and the Gappa tool [12] allows certifying numerical error
estimates in a proof assistant. Automatic proofs have been also ex-
plored: Rosa [10] uses an SMT solver to automatically prove error
bounds, FPTaylor [37] uses Taylor expansions and global optimiza-
tion to find tight over-approximations to floating point error, and
Ariadne [4] uses an SMT solver to find inputs which cause floating
point overflow. Tools like Rosa could be used to prove that Herbie’s
output meets an application-specific accuracy specification. Several
analysis tools have also been developed: Fluctuat uses abstract inter-
pretation to statically track the error of a floating-point program [18],
FPDebug uses a dynamic execution with shadow variables in higher
precision [5], and CGRS [8] uses evoluationary search to find inputs
that cause high floating-point error.

Optimization of Floating Point Programs Several tools have
looked at program transformations to speed up floating-point pro-
grams. GCC’s -ffast-math flag allows rewrites which change
floating point results; GCC gives no guarantees about the resulting
accuracy.12 The Stoke super-optimizer supports optimizing floating
point programs while guaranteeing that the resulting accuracy is ac-
ceptable [36]. Precimonious [35] attempts to decrease the precision
of intermediate results to improve run-time and memory use. None

12 For our evaluation (Section 6), we did not use this flag because it often
undid Herbie’s accuracy improvements.

of -ffast-math, Stoke, and Precimonious improve floating point
accuracy.

8. Conclusion and Future Work
Herbie automatically improves the accuracy of floating point ex-
pressions by randomly sampling inputs, localizing error, generating
candidate rewrites, and merging rewrites with complementary ef-
fects. Our results demonstrate that Herbie can effectively discover
transformations that substantially improve accuracy (recovering up
to 60 bits lost to rounding error) while imposing a median overhead
of 40%. In the future, we will extend Herbie to reduce error accu-
mulation within loops. We would also like to explore combining
Herbie with FPDebug (to extract high-error expressions from pro-
grams), FPTaylor and Rosa (to give guarantees of improved error),
and STOKE (to do accuracy-aware optimization).
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