(/ (- (exp x) 1.0) x)

Percentage Accurate: 53.9% → 100.0%
Time: 4.8s
Alternatives: 9
Speedup: 8.8×

Specification

?
\[\begin{array}{l} \\ \frac{e^{x} - 1}{x} \end{array} \]
(FPCore (x) :precision binary64 (/ (- (exp x) 1.0) x))
double code(double x) {
	return (exp(x) - 1.0) / x;
}
real(8) function code(x)
    real(8), intent (in) :: x
    code = (exp(x) - 1.0d0) / x
end function
public static double code(double x) {
	return (Math.exp(x) - 1.0) / x;
}
def code(x):
	return (math.exp(x) - 1.0) / x
function code(x)
	return Float64(Float64(exp(x) - 1.0) / x)
end
function tmp = code(x)
	tmp = (exp(x) - 1.0) / x;
end
code[x_] := N[(N[(N[Exp[x], $MachinePrecision] - 1.0), $MachinePrecision] / x), $MachinePrecision]
\begin{array}{l}

\\
\frac{e^{x} - 1}{x}
\end{array}

Sampling outcomes in binary64 precision:

Local Percentage Accuracy vs ?

The average percentage accuracy by input value. Horizontal axis shows value of an input variable; the variable is choosen in the title. Vertical axis is accuracy; higher is better. Red represent the original program, while blue represents Herbie's suggestion. These can be toggled with buttons below the plot. The line is an average while dots represent individual samples.

Accuracy vs Speed?

Herbie found 9 alternatives:

AlternativeAccuracySpeedup
The accuracy (vertical axis) and speed (horizontal axis) of each alternatives. Up and to the right is better. The red square shows the initial program, and each blue circle shows an alternative.The line shows the best available speed-accuracy tradeoffs.

Initial Program: 53.9% accurate, 1.0× speedup?

\[\begin{array}{l} \\ \frac{e^{x} - 1}{x} \end{array} \]
(FPCore (x) :precision binary64 (/ (- (exp x) 1.0) x))
double code(double x) {
	return (exp(x) - 1.0) / x;
}
real(8) function code(x)
    real(8), intent (in) :: x
    code = (exp(x) - 1.0d0) / x
end function
public static double code(double x) {
	return (Math.exp(x) - 1.0) / x;
}
def code(x):
	return (math.exp(x) - 1.0) / x
function code(x)
	return Float64(Float64(exp(x) - 1.0) / x)
end
function tmp = code(x)
	tmp = (exp(x) - 1.0) / x;
end
code[x_] := N[(N[(N[Exp[x], $MachinePrecision] - 1.0), $MachinePrecision] / x), $MachinePrecision]
\begin{array}{l}

\\
\frac{e^{x} - 1}{x}
\end{array}

Alternative 1: 100.0% accurate, 1.0× speedup?

\[\begin{array}{l} \\ \frac{\mathsf{expm1}\left(x\right)}{x} \end{array} \]
(FPCore (x) :precision binary64 (/ (expm1 x) x))
double code(double x) {
	return expm1(x) / x;
}
public static double code(double x) {
	return Math.expm1(x) / x;
}
def code(x):
	return math.expm1(x) / x
function code(x)
	return Float64(expm1(x) / x)
end
code[x_] := N[(N[(Exp[x] - 1), $MachinePrecision] / x), $MachinePrecision]
\begin{array}{l}

\\
\frac{\mathsf{expm1}\left(x\right)}{x}
\end{array}
Derivation
  1. Initial program 51.8%

    \[\frac{e^{x} - 1}{x} \]
  2. Add Preprocessing
  3. Step-by-step derivation
    1. lift--.f64N/A

      \[\leadsto \frac{\color{blue}{e^{x} - 1}}{x} \]
    2. lift-exp.f64N/A

      \[\leadsto \frac{\color{blue}{e^{x}} - 1}{x} \]
    3. lower-expm1.f64100.0

      \[\leadsto \frac{\color{blue}{\mathsf{expm1}\left(x\right)}}{x} \]
  4. Applied rewrites100.0%

    \[\leadsto \frac{\color{blue}{\mathsf{expm1}\left(x\right)}}{x} \]
  5. Add Preprocessing

Alternative 2: 67.1% accurate, 0.8× speedup?

\[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;\frac{e^{x} - 1}{x} \leq 2:\\ \;\;\;\;1\\ \mathbf{else}:\\ \;\;\;\;\left(\mathsf{fma}\left(0.041666666666666664, x, 0.16666666666666666\right) \cdot x\right) \cdot x\\ \end{array} \end{array} \]
(FPCore (x)
 :precision binary64
 (if (<= (/ (- (exp x) 1.0) x) 2.0)
   1.0
   (* (* (fma 0.041666666666666664 x 0.16666666666666666) x) x)))
double code(double x) {
	double tmp;
	if (((exp(x) - 1.0) / x) <= 2.0) {
		tmp = 1.0;
	} else {
		tmp = (fma(0.041666666666666664, x, 0.16666666666666666) * x) * x;
	}
	return tmp;
}
function code(x)
	tmp = 0.0
	if (Float64(Float64(exp(x) - 1.0) / x) <= 2.0)
		tmp = 1.0;
	else
		tmp = Float64(Float64(fma(0.041666666666666664, x, 0.16666666666666666) * x) * x);
	end
	return tmp
end
code[x_] := If[LessEqual[N[(N[(N[Exp[x], $MachinePrecision] - 1.0), $MachinePrecision] / x), $MachinePrecision], 2.0], 1.0, N[(N[(N[(0.041666666666666664 * x + 0.16666666666666666), $MachinePrecision] * x), $MachinePrecision] * x), $MachinePrecision]]
\begin{array}{l}

\\
\begin{array}{l}
\mathbf{if}\;\frac{e^{x} - 1}{x} \leq 2:\\
\;\;\;\;1\\

\mathbf{else}:\\
\;\;\;\;\left(\mathsf{fma}\left(0.041666666666666664, x, 0.16666666666666666\right) \cdot x\right) \cdot x\\


\end{array}
\end{array}
Derivation
  1. Split input into 2 regimes
  2. if (/.f64 (-.f64 (exp.f64 x) #s(literal 1 binary64)) x) < 2

    1. Initial program 36.7%

      \[\frac{e^{x} - 1}{x} \]
    2. Add Preprocessing
    3. Taylor expanded in x around 0

      \[\leadsto \color{blue}{1} \]
    4. Step-by-step derivation
      1. Applied rewrites67.6%

        \[\leadsto \color{blue}{1} \]

      if 2 < (/.f64 (-.f64 (exp.f64 x) #s(literal 1 binary64)) x)

      1. Initial program 100.0%

        \[\frac{e^{x} - 1}{x} \]
      2. Add Preprocessing
      3. Taylor expanded in x around 0

        \[\leadsto \color{blue}{1 + x \cdot \left(\frac{1}{2} + x \cdot \left(\frac{1}{6} + \frac{1}{24} \cdot x\right)\right)} \]
      4. Step-by-step derivation
        1. +-commutativeN/A

          \[\leadsto \color{blue}{x \cdot \left(\frac{1}{2} + x \cdot \left(\frac{1}{6} + \frac{1}{24} \cdot x\right)\right) + 1} \]
        2. *-commutativeN/A

          \[\leadsto \color{blue}{\left(\frac{1}{2} + x \cdot \left(\frac{1}{6} + \frac{1}{24} \cdot x\right)\right) \cdot x} + 1 \]
        3. lower-fma.f64N/A

          \[\leadsto \color{blue}{\mathsf{fma}\left(\frac{1}{2} + x \cdot \left(\frac{1}{6} + \frac{1}{24} \cdot x\right), x, 1\right)} \]
        4. +-commutativeN/A

          \[\leadsto \mathsf{fma}\left(\color{blue}{x \cdot \left(\frac{1}{6} + \frac{1}{24} \cdot x\right) + \frac{1}{2}}, x, 1\right) \]
        5. *-commutativeN/A

          \[\leadsto \mathsf{fma}\left(\color{blue}{\left(\frac{1}{6} + \frac{1}{24} \cdot x\right) \cdot x} + \frac{1}{2}, x, 1\right) \]
        6. lower-fma.f64N/A

          \[\leadsto \mathsf{fma}\left(\color{blue}{\mathsf{fma}\left(\frac{1}{6} + \frac{1}{24} \cdot x, x, \frac{1}{2}\right)}, x, 1\right) \]
        7. +-commutativeN/A

          \[\leadsto \mathsf{fma}\left(\mathsf{fma}\left(\color{blue}{\frac{1}{24} \cdot x + \frac{1}{6}}, x, \frac{1}{2}\right), x, 1\right) \]
        8. lower-fma.f6465.8

          \[\leadsto \mathsf{fma}\left(\mathsf{fma}\left(\color{blue}{\mathsf{fma}\left(0.041666666666666664, x, 0.16666666666666666\right)}, x, 0.5\right), x, 1\right) \]
      5. Applied rewrites65.8%

        \[\leadsto \color{blue}{\mathsf{fma}\left(\mathsf{fma}\left(\mathsf{fma}\left(0.041666666666666664, x, 0.16666666666666666\right), x, 0.5\right), x, 1\right)} \]
      6. Taylor expanded in x around inf

        \[\leadsto {x}^{3} \cdot \color{blue}{\left(\frac{1}{24} + \frac{1}{6} \cdot \frac{1}{x}\right)} \]
      7. Step-by-step derivation
        1. Applied rewrites65.8%

          \[\leadsto \left(\mathsf{fma}\left(0.041666666666666664, x, 0.16666666666666666\right) \cdot x\right) \cdot \color{blue}{x} \]
      8. Recombined 2 regimes into one program.
      9. Add Preprocessing

      Alternative 3: 63.1% accurate, 0.9× speedup?

      \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;\frac{e^{x} - 1}{x} \leq 2:\\ \;\;\;\;1\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(0.16666666666666666, x, 0.5\right) \cdot x\\ \end{array} \end{array} \]
      (FPCore (x)
       :precision binary64
       (if (<= (/ (- (exp x) 1.0) x) 2.0) 1.0 (* (fma 0.16666666666666666 x 0.5) x)))
      double code(double x) {
      	double tmp;
      	if (((exp(x) - 1.0) / x) <= 2.0) {
      		tmp = 1.0;
      	} else {
      		tmp = fma(0.16666666666666666, x, 0.5) * x;
      	}
      	return tmp;
      }
      
      function code(x)
      	tmp = 0.0
      	if (Float64(Float64(exp(x) - 1.0) / x) <= 2.0)
      		tmp = 1.0;
      	else
      		tmp = Float64(fma(0.16666666666666666, x, 0.5) * x);
      	end
      	return tmp
      end
      
      code[x_] := If[LessEqual[N[(N[(N[Exp[x], $MachinePrecision] - 1.0), $MachinePrecision] / x), $MachinePrecision], 2.0], 1.0, N[(N[(0.16666666666666666 * x + 0.5), $MachinePrecision] * x), $MachinePrecision]]
      
      \begin{array}{l}
      
      \\
      \begin{array}{l}
      \mathbf{if}\;\frac{e^{x} - 1}{x} \leq 2:\\
      \;\;\;\;1\\
      
      \mathbf{else}:\\
      \;\;\;\;\mathsf{fma}\left(0.16666666666666666, x, 0.5\right) \cdot x\\
      
      
      \end{array}
      \end{array}
      
      Derivation
      1. Split input into 2 regimes
      2. if (/.f64 (-.f64 (exp.f64 x) #s(literal 1 binary64)) x) < 2

        1. Initial program 36.7%

          \[\frac{e^{x} - 1}{x} \]
        2. Add Preprocessing
        3. Taylor expanded in x around 0

          \[\leadsto \color{blue}{1} \]
        4. Step-by-step derivation
          1. Applied rewrites67.6%

            \[\leadsto \color{blue}{1} \]

          if 2 < (/.f64 (-.f64 (exp.f64 x) #s(literal 1 binary64)) x)

          1. Initial program 100.0%

            \[\frac{e^{x} - 1}{x} \]
          2. Add Preprocessing
          3. Taylor expanded in x around 0

            \[\leadsto \color{blue}{1 + x \cdot \left(\frac{1}{2} + \frac{1}{6} \cdot x\right)} \]
          4. Step-by-step derivation
            1. +-commutativeN/A

              \[\leadsto \color{blue}{x \cdot \left(\frac{1}{2} + \frac{1}{6} \cdot x\right) + 1} \]
            2. *-commutativeN/A

              \[\leadsto \color{blue}{\left(\frac{1}{2} + \frac{1}{6} \cdot x\right) \cdot x} + 1 \]
            3. lower-fma.f64N/A

              \[\leadsto \color{blue}{\mathsf{fma}\left(\frac{1}{2} + \frac{1}{6} \cdot x, x, 1\right)} \]
            4. +-commutativeN/A

              \[\leadsto \mathsf{fma}\left(\color{blue}{\frac{1}{6} \cdot x + \frac{1}{2}}, x, 1\right) \]
            5. lower-fma.f6445.7

              \[\leadsto \mathsf{fma}\left(\color{blue}{\mathsf{fma}\left(0.16666666666666666, x, 0.5\right)}, x, 1\right) \]
          5. Applied rewrites45.7%

            \[\leadsto \color{blue}{\mathsf{fma}\left(\mathsf{fma}\left(0.16666666666666666, x, 0.5\right), x, 1\right)} \]
          6. Taylor expanded in x around inf

            \[\leadsto {x}^{2} \cdot \color{blue}{\left(\frac{1}{6} + \frac{1}{2} \cdot \frac{1}{x}\right)} \]
          7. Applied rewrites45.7%

            \[\leadsto \mathsf{fma}\left(0.16666666666666666, x, 0.5\right) \cdot \color{blue}{x} \]
        5. Recombined 2 regimes into one program.
        6. Add Preprocessing

        Alternative 4: 63.1% accurate, 0.9× speedup?

        \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;\frac{e^{x} - 1}{x} \leq 2:\\ \;\;\;\;1\\ \mathbf{else}:\\ \;\;\;\;\left(x \cdot x\right) \cdot 0.16666666666666666\\ \end{array} \end{array} \]
        (FPCore (x)
         :precision binary64
         (if (<= (/ (- (exp x) 1.0) x) 2.0) 1.0 (* (* x x) 0.16666666666666666)))
        double code(double x) {
        	double tmp;
        	if (((exp(x) - 1.0) / x) <= 2.0) {
        		tmp = 1.0;
        	} else {
        		tmp = (x * x) * 0.16666666666666666;
        	}
        	return tmp;
        }
        
        real(8) function code(x)
            real(8), intent (in) :: x
            real(8) :: tmp
            if (((exp(x) - 1.0d0) / x) <= 2.0d0) then
                tmp = 1.0d0
            else
                tmp = (x * x) * 0.16666666666666666d0
            end if
            code = tmp
        end function
        
        public static double code(double x) {
        	double tmp;
        	if (((Math.exp(x) - 1.0) / x) <= 2.0) {
        		tmp = 1.0;
        	} else {
        		tmp = (x * x) * 0.16666666666666666;
        	}
        	return tmp;
        }
        
        def code(x):
        	tmp = 0
        	if ((math.exp(x) - 1.0) / x) <= 2.0:
        		tmp = 1.0
        	else:
        		tmp = (x * x) * 0.16666666666666666
        	return tmp
        
        function code(x)
        	tmp = 0.0
        	if (Float64(Float64(exp(x) - 1.0) / x) <= 2.0)
        		tmp = 1.0;
        	else
        		tmp = Float64(Float64(x * x) * 0.16666666666666666);
        	end
        	return tmp
        end
        
        function tmp_2 = code(x)
        	tmp = 0.0;
        	if (((exp(x) - 1.0) / x) <= 2.0)
        		tmp = 1.0;
        	else
        		tmp = (x * x) * 0.16666666666666666;
        	end
        	tmp_2 = tmp;
        end
        
        code[x_] := If[LessEqual[N[(N[(N[Exp[x], $MachinePrecision] - 1.0), $MachinePrecision] / x), $MachinePrecision], 2.0], 1.0, N[(N[(x * x), $MachinePrecision] * 0.16666666666666666), $MachinePrecision]]
        
        \begin{array}{l}
        
        \\
        \begin{array}{l}
        \mathbf{if}\;\frac{e^{x} - 1}{x} \leq 2:\\
        \;\;\;\;1\\
        
        \mathbf{else}:\\
        \;\;\;\;\left(x \cdot x\right) \cdot 0.16666666666666666\\
        
        
        \end{array}
        \end{array}
        
        Derivation
        1. Split input into 2 regimes
        2. if (/.f64 (-.f64 (exp.f64 x) #s(literal 1 binary64)) x) < 2

          1. Initial program 36.7%

            \[\frac{e^{x} - 1}{x} \]
          2. Add Preprocessing
          3. Taylor expanded in x around 0

            \[\leadsto \color{blue}{1} \]
          4. Step-by-step derivation
            1. Applied rewrites67.6%

              \[\leadsto \color{blue}{1} \]

            if 2 < (/.f64 (-.f64 (exp.f64 x) #s(literal 1 binary64)) x)

            1. Initial program 100.0%

              \[\frac{e^{x} - 1}{x} \]
            2. Add Preprocessing
            3. Taylor expanded in x around 0

              \[\leadsto \color{blue}{1 + x \cdot \left(\frac{1}{2} + \frac{1}{6} \cdot x\right)} \]
            4. Step-by-step derivation
              1. +-commutativeN/A

                \[\leadsto \color{blue}{x \cdot \left(\frac{1}{2} + \frac{1}{6} \cdot x\right) + 1} \]
              2. *-commutativeN/A

                \[\leadsto \color{blue}{\left(\frac{1}{2} + \frac{1}{6} \cdot x\right) \cdot x} + 1 \]
              3. lower-fma.f64N/A

                \[\leadsto \color{blue}{\mathsf{fma}\left(\frac{1}{2} + \frac{1}{6} \cdot x, x, 1\right)} \]
              4. +-commutativeN/A

                \[\leadsto \mathsf{fma}\left(\color{blue}{\frac{1}{6} \cdot x + \frac{1}{2}}, x, 1\right) \]
              5. lower-fma.f6445.7

                \[\leadsto \mathsf{fma}\left(\color{blue}{\mathsf{fma}\left(0.16666666666666666, x, 0.5\right)}, x, 1\right) \]
            5. Applied rewrites45.7%

              \[\leadsto \color{blue}{\mathsf{fma}\left(\mathsf{fma}\left(0.16666666666666666, x, 0.5\right), x, 1\right)} \]
            6. Taylor expanded in x around inf

              \[\leadsto \frac{1}{6} \cdot \color{blue}{{x}^{2}} \]
            7. Step-by-step derivation
              1. Applied rewrites45.7%

                \[\leadsto \left(x \cdot x\right) \cdot \color{blue}{0.16666666666666666} \]
            8. Recombined 2 regimes into one program.
            9. Add Preprocessing

            Alternative 5: 68.9% accurate, 3.3× speedup?

            \[\begin{array}{l} \\ \frac{\mathsf{fma}\left(\mathsf{fma}\left(\mathsf{fma}\left(0.041666666666666664, x, 0.16666666666666666\right), x, 0.5\right), x, 1\right) \cdot x}{x} \end{array} \]
            (FPCore (x)
             :precision binary64
             (/
              (*
               (fma (fma (fma 0.041666666666666664 x 0.16666666666666666) x 0.5) x 1.0)
               x)
              x))
            double code(double x) {
            	return (fma(fma(fma(0.041666666666666664, x, 0.16666666666666666), x, 0.5), x, 1.0) * x) / x;
            }
            
            function code(x)
            	return Float64(Float64(fma(fma(fma(0.041666666666666664, x, 0.16666666666666666), x, 0.5), x, 1.0) * x) / x)
            end
            
            code[x_] := N[(N[(N[(N[(N[(0.041666666666666664 * x + 0.16666666666666666), $MachinePrecision] * x + 0.5), $MachinePrecision] * x + 1.0), $MachinePrecision] * x), $MachinePrecision] / x), $MachinePrecision]
            
            \begin{array}{l}
            
            \\
            \frac{\mathsf{fma}\left(\mathsf{fma}\left(\mathsf{fma}\left(0.041666666666666664, x, 0.16666666666666666\right), x, 0.5\right), x, 1\right) \cdot x}{x}
            \end{array}
            
            Derivation
            1. Initial program 51.8%

              \[\frac{e^{x} - 1}{x} \]
            2. Add Preprocessing
            3. Taylor expanded in x around 0

              \[\leadsto \frac{\color{blue}{x \cdot \left(1 + x \cdot \left(\frac{1}{2} + x \cdot \left(\frac{1}{6} + \frac{1}{24} \cdot x\right)\right)\right)}}{x} \]
            4. Step-by-step derivation
              1. *-commutativeN/A

                \[\leadsto \frac{\color{blue}{\left(1 + x \cdot \left(\frac{1}{2} + x \cdot \left(\frac{1}{6} + \frac{1}{24} \cdot x\right)\right)\right) \cdot x}}{x} \]
              2. lower-*.f64N/A

                \[\leadsto \frac{\color{blue}{\left(1 + x \cdot \left(\frac{1}{2} + x \cdot \left(\frac{1}{6} + \frac{1}{24} \cdot x\right)\right)\right) \cdot x}}{x} \]
              3. +-commutativeN/A

                \[\leadsto \frac{\color{blue}{\left(x \cdot \left(\frac{1}{2} + x \cdot \left(\frac{1}{6} + \frac{1}{24} \cdot x\right)\right) + 1\right)} \cdot x}{x} \]
              4. *-commutativeN/A

                \[\leadsto \frac{\left(\color{blue}{\left(\frac{1}{2} + x \cdot \left(\frac{1}{6} + \frac{1}{24} \cdot x\right)\right) \cdot x} + 1\right) \cdot x}{x} \]
              5. lower-fma.f64N/A

                \[\leadsto \frac{\color{blue}{\mathsf{fma}\left(\frac{1}{2} + x \cdot \left(\frac{1}{6} + \frac{1}{24} \cdot x\right), x, 1\right)} \cdot x}{x} \]
              6. +-commutativeN/A

                \[\leadsto \frac{\mathsf{fma}\left(\color{blue}{x \cdot \left(\frac{1}{6} + \frac{1}{24} \cdot x\right) + \frac{1}{2}}, x, 1\right) \cdot x}{x} \]
              7. *-commutativeN/A

                \[\leadsto \frac{\mathsf{fma}\left(\color{blue}{\left(\frac{1}{6} + \frac{1}{24} \cdot x\right) \cdot x} + \frac{1}{2}, x, 1\right) \cdot x}{x} \]
              8. lower-fma.f64N/A

                \[\leadsto \frac{\mathsf{fma}\left(\color{blue}{\mathsf{fma}\left(\frac{1}{6} + \frac{1}{24} \cdot x, x, \frac{1}{2}\right)}, x, 1\right) \cdot x}{x} \]
              9. +-commutativeN/A

                \[\leadsto \frac{\mathsf{fma}\left(\mathsf{fma}\left(\color{blue}{\frac{1}{24} \cdot x + \frac{1}{6}}, x, \frac{1}{2}\right), x, 1\right) \cdot x}{x} \]
              10. lower-fma.f6468.2

                \[\leadsto \frac{\mathsf{fma}\left(\mathsf{fma}\left(\color{blue}{\mathsf{fma}\left(0.041666666666666664, x, 0.16666666666666666\right)}, x, 0.5\right), x, 1\right) \cdot x}{x} \]
            5. Applied rewrites68.2%

              \[\leadsto \frac{\color{blue}{\mathsf{fma}\left(\mathsf{fma}\left(\mathsf{fma}\left(0.041666666666666664, x, 0.16666666666666666\right), x, 0.5\right), x, 1\right) \cdot x}}{x} \]
            6. Add Preprocessing

            Alternative 6: 66.9% accurate, 6.1× speedup?

            \[\begin{array}{l} \\ \mathsf{fma}\left(\mathsf{fma}\left(\mathsf{fma}\left(0.041666666666666664, x, 0.16666666666666666\right), x, 0.5\right), x, 1\right) \end{array} \]
            (FPCore (x)
             :precision binary64
             (fma (fma (fma 0.041666666666666664 x 0.16666666666666666) x 0.5) x 1.0))
            double code(double x) {
            	return fma(fma(fma(0.041666666666666664, x, 0.16666666666666666), x, 0.5), x, 1.0);
            }
            
            function code(x)
            	return fma(fma(fma(0.041666666666666664, x, 0.16666666666666666), x, 0.5), x, 1.0)
            end
            
            code[x_] := N[(N[(N[(0.041666666666666664 * x + 0.16666666666666666), $MachinePrecision] * x + 0.5), $MachinePrecision] * x + 1.0), $MachinePrecision]
            
            \begin{array}{l}
            
            \\
            \mathsf{fma}\left(\mathsf{fma}\left(\mathsf{fma}\left(0.041666666666666664, x, 0.16666666666666666\right), x, 0.5\right), x, 1\right)
            \end{array}
            
            Derivation
            1. Initial program 51.8%

              \[\frac{e^{x} - 1}{x} \]
            2. Add Preprocessing
            3. Taylor expanded in x around 0

              \[\leadsto \color{blue}{1 + x \cdot \left(\frac{1}{2} + x \cdot \left(\frac{1}{6} + \frac{1}{24} \cdot x\right)\right)} \]
            4. Step-by-step derivation
              1. +-commutativeN/A

                \[\leadsto \color{blue}{x \cdot \left(\frac{1}{2} + x \cdot \left(\frac{1}{6} + \frac{1}{24} \cdot x\right)\right) + 1} \]
              2. *-commutativeN/A

                \[\leadsto \color{blue}{\left(\frac{1}{2} + x \cdot \left(\frac{1}{6} + \frac{1}{24} \cdot x\right)\right) \cdot x} + 1 \]
              3. lower-fma.f64N/A

                \[\leadsto \color{blue}{\mathsf{fma}\left(\frac{1}{2} + x \cdot \left(\frac{1}{6} + \frac{1}{24} \cdot x\right), x, 1\right)} \]
              4. +-commutativeN/A

                \[\leadsto \mathsf{fma}\left(\color{blue}{x \cdot \left(\frac{1}{6} + \frac{1}{24} \cdot x\right) + \frac{1}{2}}, x, 1\right) \]
              5. *-commutativeN/A

                \[\leadsto \mathsf{fma}\left(\color{blue}{\left(\frac{1}{6} + \frac{1}{24} \cdot x\right) \cdot x} + \frac{1}{2}, x, 1\right) \]
              6. lower-fma.f64N/A

                \[\leadsto \mathsf{fma}\left(\color{blue}{\mathsf{fma}\left(\frac{1}{6} + \frac{1}{24} \cdot x, x, \frac{1}{2}\right)}, x, 1\right) \]
              7. +-commutativeN/A

                \[\leadsto \mathsf{fma}\left(\mathsf{fma}\left(\color{blue}{\frac{1}{24} \cdot x + \frac{1}{6}}, x, \frac{1}{2}\right), x, 1\right) \]
              8. lower-fma.f6466.4

                \[\leadsto \mathsf{fma}\left(\mathsf{fma}\left(\color{blue}{\mathsf{fma}\left(0.041666666666666664, x, 0.16666666666666666\right)}, x, 0.5\right), x, 1\right) \]
            5. Applied rewrites66.4%

              \[\leadsto \color{blue}{\mathsf{fma}\left(\mathsf{fma}\left(\mathsf{fma}\left(0.041666666666666664, x, 0.16666666666666666\right), x, 0.5\right), x, 1\right)} \]
            6. Add Preprocessing

            Alternative 7: 66.0% accurate, 6.8× speedup?

            \[\begin{array}{l} \\ \mathsf{fma}\left(\left(x \cdot x\right) \cdot 0.041666666666666664, x, 1\right) \end{array} \]
            (FPCore (x) :precision binary64 (fma (* (* x x) 0.041666666666666664) x 1.0))
            double code(double x) {
            	return fma(((x * x) * 0.041666666666666664), x, 1.0);
            }
            
            function code(x)
            	return fma(Float64(Float64(x * x) * 0.041666666666666664), x, 1.0)
            end
            
            code[x_] := N[(N[(N[(x * x), $MachinePrecision] * 0.041666666666666664), $MachinePrecision] * x + 1.0), $MachinePrecision]
            
            \begin{array}{l}
            
            \\
            \mathsf{fma}\left(\left(x \cdot x\right) \cdot 0.041666666666666664, x, 1\right)
            \end{array}
            
            Derivation
            1. Initial program 51.8%

              \[\frac{e^{x} - 1}{x} \]
            2. Add Preprocessing
            3. Taylor expanded in x around 0

              \[\leadsto \color{blue}{1 + x \cdot \left(\frac{1}{2} + x \cdot \left(\frac{1}{6} + \frac{1}{24} \cdot x\right)\right)} \]
            4. Step-by-step derivation
              1. +-commutativeN/A

                \[\leadsto \color{blue}{x \cdot \left(\frac{1}{2} + x \cdot \left(\frac{1}{6} + \frac{1}{24} \cdot x\right)\right) + 1} \]
              2. *-commutativeN/A

                \[\leadsto \color{blue}{\left(\frac{1}{2} + x \cdot \left(\frac{1}{6} + \frac{1}{24} \cdot x\right)\right) \cdot x} + 1 \]
              3. lower-fma.f64N/A

                \[\leadsto \color{blue}{\mathsf{fma}\left(\frac{1}{2} + x \cdot \left(\frac{1}{6} + \frac{1}{24} \cdot x\right), x, 1\right)} \]
              4. +-commutativeN/A

                \[\leadsto \mathsf{fma}\left(\color{blue}{x \cdot \left(\frac{1}{6} + \frac{1}{24} \cdot x\right) + \frac{1}{2}}, x, 1\right) \]
              5. *-commutativeN/A

                \[\leadsto \mathsf{fma}\left(\color{blue}{\left(\frac{1}{6} + \frac{1}{24} \cdot x\right) \cdot x} + \frac{1}{2}, x, 1\right) \]
              6. lower-fma.f64N/A

                \[\leadsto \mathsf{fma}\left(\color{blue}{\mathsf{fma}\left(\frac{1}{6} + \frac{1}{24} \cdot x, x, \frac{1}{2}\right)}, x, 1\right) \]
              7. +-commutativeN/A

                \[\leadsto \mathsf{fma}\left(\mathsf{fma}\left(\color{blue}{\frac{1}{24} \cdot x + \frac{1}{6}}, x, \frac{1}{2}\right), x, 1\right) \]
              8. lower-fma.f6466.4

                \[\leadsto \mathsf{fma}\left(\mathsf{fma}\left(\color{blue}{\mathsf{fma}\left(0.041666666666666664, x, 0.16666666666666666\right)}, x, 0.5\right), x, 1\right) \]
            5. Applied rewrites66.4%

              \[\leadsto \color{blue}{\mathsf{fma}\left(\mathsf{fma}\left(\mathsf{fma}\left(0.041666666666666664, x, 0.16666666666666666\right), x, 0.5\right), x, 1\right)} \]
            6. Taylor expanded in x around inf

              \[\leadsto \mathsf{fma}\left(\frac{1}{24} \cdot {x}^{2}, x, 1\right) \]
            7. Step-by-step derivation
              1. Applied rewrites66.1%

                \[\leadsto \mathsf{fma}\left(\left(x \cdot x\right) \cdot 0.041666666666666664, x, 1\right) \]
              2. Add Preprocessing

              Alternative 8: 63.3% accurate, 8.8× speedup?

              \[\begin{array}{l} \\ \mathsf{fma}\left(\mathsf{fma}\left(0.16666666666666666, x, 0.5\right), x, 1\right) \end{array} \]
              (FPCore (x) :precision binary64 (fma (fma 0.16666666666666666 x 0.5) x 1.0))
              double code(double x) {
              	return fma(fma(0.16666666666666666, x, 0.5), x, 1.0);
              }
              
              function code(x)
              	return fma(fma(0.16666666666666666, x, 0.5), x, 1.0)
              end
              
              code[x_] := N[(N[(0.16666666666666666 * x + 0.5), $MachinePrecision] * x + 1.0), $MachinePrecision]
              
              \begin{array}{l}
              
              \\
              \mathsf{fma}\left(\mathsf{fma}\left(0.16666666666666666, x, 0.5\right), x, 1\right)
              \end{array}
              
              Derivation
              1. Initial program 51.8%

                \[\frac{e^{x} - 1}{x} \]
              2. Add Preprocessing
              3. Taylor expanded in x around 0

                \[\leadsto \color{blue}{1 + x \cdot \left(\frac{1}{2} + \frac{1}{6} \cdot x\right)} \]
              4. Step-by-step derivation
                1. +-commutativeN/A

                  \[\leadsto \color{blue}{x \cdot \left(\frac{1}{2} + \frac{1}{6} \cdot x\right) + 1} \]
                2. *-commutativeN/A

                  \[\leadsto \color{blue}{\left(\frac{1}{2} + \frac{1}{6} \cdot x\right) \cdot x} + 1 \]
                3. lower-fma.f64N/A

                  \[\leadsto \color{blue}{\mathsf{fma}\left(\frac{1}{2} + \frac{1}{6} \cdot x, x, 1\right)} \]
                4. +-commutativeN/A

                  \[\leadsto \mathsf{fma}\left(\color{blue}{\frac{1}{6} \cdot x + \frac{1}{2}}, x, 1\right) \]
                5. lower-fma.f6462.1

                  \[\leadsto \mathsf{fma}\left(\color{blue}{\mathsf{fma}\left(0.16666666666666666, x, 0.5\right)}, x, 1\right) \]
              5. Applied rewrites62.1%

                \[\leadsto \color{blue}{\mathsf{fma}\left(\mathsf{fma}\left(0.16666666666666666, x, 0.5\right), x, 1\right)} \]
              6. Add Preprocessing

              Alternative 9: 50.3% accurate, 115.0× speedup?

              \[\begin{array}{l} \\ 1 \end{array} \]
              (FPCore (x) :precision binary64 1.0)
              double code(double x) {
              	return 1.0;
              }
              
              real(8) function code(x)
                  real(8), intent (in) :: x
                  code = 1.0d0
              end function
              
              public static double code(double x) {
              	return 1.0;
              }
              
              def code(x):
              	return 1.0
              
              function code(x)
              	return 1.0
              end
              
              function tmp = code(x)
              	tmp = 1.0;
              end
              
              code[x_] := 1.0
              
              \begin{array}{l}
              
              \\
              1
              \end{array}
              
              Derivation
              1. Initial program 51.8%

                \[\frac{e^{x} - 1}{x} \]
              2. Add Preprocessing
              3. Taylor expanded in x around 0

                \[\leadsto \color{blue}{1} \]
              4. Step-by-step derivation
                1. Applied rewrites52.2%

                  \[\leadsto \color{blue}{1} \]
                2. Add Preprocessing

                Reproduce

                ?
                herbie shell --seed 1 
                (FPCore (x)
                  :name "(/ (- (exp x) 1.0) x)"
                  :precision binary64
                  (/ (- (exp x) 1.0) x))