Alternative 1 | |
---|---|
Error | 0.0 |
Cost | 19392 |
\[\frac{\sin \left(\sqrt{x}\right)}{\sqrt{x}}
\]
(FPCore (x) :precision binary64 (/ (sin (sqrt x)) (sqrt x)))
(FPCore (x) :precision binary64 (log (exp (/ (sin (sqrt x)) (sqrt x)))))
double code(double x) { return sin(sqrt(x)) / sqrt(x); }
double code(double x) { return log(exp((sin(sqrt(x)) / sqrt(x)))); }
real(8) function code(x) real(8), intent (in) :: x code = sin(sqrt(x)) / sqrt(x) end function
real(8) function code(x) real(8), intent (in) :: x code = log(exp((sin(sqrt(x)) / sqrt(x)))) end function
public static double code(double x) { return Math.sin(Math.sqrt(x)) / Math.sqrt(x); }
public static double code(double x) { return Math.log(Math.exp((Math.sin(Math.sqrt(x)) / Math.sqrt(x)))); }
def code(x): return math.sin(math.sqrt(x)) / math.sqrt(x)
def code(x): return math.log(math.exp((math.sin(math.sqrt(x)) / math.sqrt(x))))
function code(x) return Float64(sin(sqrt(x)) / sqrt(x)) end
function code(x) return log(exp(Float64(sin(sqrt(x)) / sqrt(x)))) end
function tmp = code(x) tmp = sin(sqrt(x)) / sqrt(x); end
function tmp = code(x) tmp = log(exp((sin(sqrt(x)) / sqrt(x)))); end
code[x_] := N[(N[Sin[N[Sqrt[x], $MachinePrecision]], $MachinePrecision] / N[Sqrt[x], $MachinePrecision]), $MachinePrecision]
code[x_] := N[Log[N[Exp[N[(N[Sin[N[Sqrt[x], $MachinePrecision]], $MachinePrecision] / N[Sqrt[x], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]
\frac{\sin \left(\sqrt{x}\right)}{\sqrt{x}}
\log \left(e^{\frac{\sin \left(\sqrt{x}\right)}{\sqrt{x}}}\right)
Results
Initial program 0.0
Applied egg-rr0.0
Final simplification0.0
Alternative 1 | |
---|---|
Error | 0.0 |
Cost | 19392 |
Alternative 2 | |
---|---|
Error | 62.0 |
Cost | 64 |
herbie shell --seed 1
(FPCore (x)
:name "sin(sqrt(x))/sqrt(x)"
:precision binary64
:pre (and (<= 0.0 x) (<= x 1000.0))
(/ (sin (sqrt x)) (sqrt x)))