?

Average Error: 2.2 → 0.2
Time: 9.0s
Precision: binary64
Cost: 19712

?

\[0.001 \leq x \land x \leq 1\]
\[\frac{\log \left(1 - x\right)}{\log \left(1 + x\right)} \]
\[\frac{\mathsf{log1p}\left(x \cdot \left(-x\right)\right) - \mathsf{log1p}\left(x\right)}{\mathsf{log1p}\left(x\right)} \]
(FPCore (x) :precision binary64 (/ (log (- 1.0 x)) (log (+ 1.0 x))))
(FPCore (x)
 :precision binary64
 (/ (- (log1p (* x (- x))) (log1p x)) (log1p x)))
double code(double x) {
	return log((1.0 - x)) / log((1.0 + x));
}
double code(double x) {
	return (log1p((x * -x)) - log1p(x)) / log1p(x);
}
public static double code(double x) {
	return Math.log((1.0 - x)) / Math.log((1.0 + x));
}
public static double code(double x) {
	return (Math.log1p((x * -x)) - Math.log1p(x)) / Math.log1p(x);
}
def code(x):
	return math.log((1.0 - x)) / math.log((1.0 + x))
def code(x):
	return (math.log1p((x * -x)) - math.log1p(x)) / math.log1p(x)
function code(x)
	return Float64(log(Float64(1.0 - x)) / log(Float64(1.0 + x)))
end
function code(x)
	return Float64(Float64(log1p(Float64(x * Float64(-x))) - log1p(x)) / log1p(x))
end
code[x_] := N[(N[Log[N[(1.0 - x), $MachinePrecision]], $MachinePrecision] / N[Log[N[(1.0 + x), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]
code[x_] := N[(N[(N[Log[1 + N[(x * (-x)), $MachinePrecision]], $MachinePrecision] - N[Log[1 + x], $MachinePrecision]), $MachinePrecision] / N[Log[1 + x], $MachinePrecision]), $MachinePrecision]
\frac{\log \left(1 - x\right)}{\log \left(1 + x\right)}
\frac{\mathsf{log1p}\left(x \cdot \left(-x\right)\right) - \mathsf{log1p}\left(x\right)}{\mathsf{log1p}\left(x\right)}

Error?

Try it out?

Your Program's Arguments

Results

Enter valid numbers for all inputs

Derivation?

  1. Initial program 2.2

    \[\frac{\log \left(1 - x\right)}{\log \left(1 + x\right)} \]
  2. Simplified2.6

    \[\leadsto \color{blue}{\frac{\log \left(1 - x\right)}{\mathsf{log1p}\left(x\right)}} \]
    Proof

    [Start]2.2

    \[ \frac{\log \left(1 - x\right)}{\log \left(1 + x\right)} \]

    log1p-def [=>]2.6

    \[ \frac{\log \left(1 - x\right)}{\color{blue}{\mathsf{log1p}\left(x\right)}} \]
  3. Applied egg-rr3.6

    \[\leadsto \frac{\color{blue}{\left(\log \left(1 - x \cdot x\right) - e^{\mathsf{log1p}\left(\mathsf{log1p}\left(x\right)\right)}\right) + 1}}{\mathsf{log1p}\left(x\right)} \]
  4. Simplified0.2

    \[\leadsto \frac{\color{blue}{\mathsf{log1p}\left(x \cdot \left(-x\right)\right) - \mathsf{log1p}\left(x\right)}}{\mathsf{log1p}\left(x\right)} \]
    Proof

    [Start]3.6

    \[ \frac{\left(\log \left(1 - x \cdot x\right) - e^{\mathsf{log1p}\left(\mathsf{log1p}\left(x\right)\right)}\right) + 1}{\mathsf{log1p}\left(x\right)} \]

    associate-+l- [=>]3.3

    \[ \frac{\color{blue}{\log \left(1 - x \cdot x\right) - \left(e^{\mathsf{log1p}\left(\mathsf{log1p}\left(x\right)\right)} - 1\right)}}{\mathsf{log1p}\left(x\right)} \]

    sub-neg [=>]3.3

    \[ \frac{\log \color{blue}{\left(1 + \left(-x \cdot x\right)\right)} - \left(e^{\mathsf{log1p}\left(\mathsf{log1p}\left(x\right)\right)} - 1\right)}{\mathsf{log1p}\left(x\right)} \]

    log1p-def [=>]3.3

    \[ \frac{\color{blue}{\mathsf{log1p}\left(-x \cdot x\right)} - \left(e^{\mathsf{log1p}\left(\mathsf{log1p}\left(x\right)\right)} - 1\right)}{\mathsf{log1p}\left(x\right)} \]

    distribute-rgt-neg-in [=>]3.3

    \[ \frac{\mathsf{log1p}\left(\color{blue}{x \cdot \left(-x\right)}\right) - \left(e^{\mathsf{log1p}\left(\mathsf{log1p}\left(x\right)\right)} - 1\right)}{\mathsf{log1p}\left(x\right)} \]

    expm1-def [=>]0.3

    \[ \frac{\mathsf{log1p}\left(x \cdot \left(-x\right)\right) - \color{blue}{\mathsf{expm1}\left(\mathsf{log1p}\left(\mathsf{log1p}\left(x\right)\right)\right)}}{\mathsf{log1p}\left(x\right)} \]

    expm1-log1p [=>]0.2

    \[ \frac{\mathsf{log1p}\left(x \cdot \left(-x\right)\right) - \color{blue}{\mathsf{log1p}\left(x\right)}}{\mathsf{log1p}\left(x\right)} \]
  5. Final simplification0.2

    \[\leadsto \frac{\mathsf{log1p}\left(x \cdot \left(-x\right)\right) - \mathsf{log1p}\left(x\right)}{\mathsf{log1p}\left(x\right)} \]

Alternatives

Alternative 1
Error0.3
Cost13056
\[\frac{\mathsf{log1p}\left(-x\right)}{\mathsf{log1p}\left(x\right)} \]
Alternative 2
Error30.7
Cost832
\[-1 + \left(\left(x \cdot x\right) \cdot \left(x \cdot -0.4166666666666667 + -0.5\right) - x\right) \]
Alternative 3
Error41.3
Cost192
\[-1 - x \]
Alternative 4
Error47.2
Cost64
\[-1 \]

Error

Reproduce?

herbie shell --seed 1 
(FPCore (x)
  :name "log(1 - x) / log(1 + x)"
  :precision binary64
  :pre (and (<= 0.001 x) (<= x 1.0))
  (/ (log (- 1.0 x)) (log (+ 1.0 x))))