(FPCore (x) :precision binary64 (acos (cos x)))
double code(double x) { return acos(cos(x)); }
real(8) function code(x) real(8), intent (in) :: x code = acos(cos(x)) end function
public static double code(double x) { return Math.acos(Math.cos(x)); }
def code(x): return math.acos(math.cos(x))
function code(x) return acos(cos(x)) end
function tmp = code(x) tmp = acos(cos(x)); end
code[x_] := N[ArcCos[N[Cos[x], $MachinePrecision]], $MachinePrecision]
\begin{array}{l} \\ \cos^{-1} \cos x \end{array}
Sampling outcomes in binary64 precision:
Herbie found 2 alternatives:
Alternative | Accuracy | Speedup |
---|
(FPCore (x) :precision binary64 (acos (cos x)))
double code(double x) { return acos(cos(x)); }
real(8) function code(x) real(8), intent (in) :: x code = acos(cos(x)) end function
public static double code(double x) { return Math.acos(Math.cos(x)); }
def code(x): return math.acos(math.cos(x))
function code(x) return acos(cos(x)) end
function tmp = code(x) tmp = acos(cos(x)); end
code[x_] := N[ArcCos[N[Cos[x], $MachinePrecision]], $MachinePrecision]
\begin{array}{l} \\ \cos^{-1} \cos x \end{array}
(FPCore (x) :precision binary64 (fabs (remainder x (* 2.0 (PI)))))
\begin{array}{l} \\ \left|\left(x \mathsf{rem} \left(2 \cdot \mathsf{PI}\left(\right)\right)\right)\right| \end{array}
Initial program 7.6%
lift-acos.f64
N/A
lift-cos.f64
N/A
acos-cos
N/A
lower-fabs.f64
N/A
lower-remainder.f64
N/A
lower-*.f64
N/A
lower-PI.f64
100.0
Applied rewrites100.0%
(FPCore (x) :precision binary64 x)
double code(double x) { return x; }
real(8) function code(x) real(8), intent (in) :: x code = x end function
public static double code(double x) { return x; }
def code(x): return x
function code(x) return x end
function tmp = code(x) tmp = x; end
code[x_] := x
\begin{array}{l} \\ x \end{array}
Initial program 7.6%
lift-acos.f64
N/A
lift-cos.f64
N/A
acos-cos-s
99.7
Applied rewrites99.7%
herbie shell --seed 1
(FPCore (x)
:name "acos(cos(x))"
:precision binary64
:pre (and (<= 0.0 x) (<= x 7.0))
(acos (cos x)))